

Recent Research Progresses in Rotorcraft Flight Dynamics and Autonomous Flight Control at KKU

2024. 02 Prof. Chang-Joo Kim (Konkuk University, Seoul, Korea)

Recent Research Progresses in Rotorcraft Flight Dynamics and Autonomous Flight Control at KKU

Part 1: Rotorcraft Flight Dynamics

2024. 02 Prof. Chang-Joo Kim (Konkuk University, Seoul, Korea)

1 Flight Dynamic Model (HETLAS)

2 Recent Progress in HETLAS Applications

Importance and Methodologies of MTE Analysis

Kinematically Exact Inverse Simulation Techniques

Direct Dynamic Simulation Approach to NOCP

3 Summary of Part 1

KU RONKUK UNIV Flight Dynamic Model (HETLAS)

Objectives of HETLAS

HETLAS: Helicopter Trim, Linearization, And Simulation

Primary Tool for Rotorcraft Design/Development using Following Functions and Applications

KU RONKUK UNIV. Flight Dynamic Model (HETLAS)

Modeling Concept: Component-Based / Physical-Law-Based Approach

Generalized Rotor Model

Rotor-components modeling requirements

- Any configurations of the rotor/propeller can be handled.
- Flapping and lagging motions are independently adopted (Ex. No dynamics: ABC rotor blade)
- Interference among rotors using empirical data.
- Both Pitch controls and RPM control are selectable.
- Number of blades and airfoils is not limited.
- · Input data of each blade are received from external files
- Various inflow models
- High-fidelity rotor modeling techniques
- General rotor orientations
- General directions of rotor rotation (CW, CCW)

Diversity in Rotor Configurations is reflected in selecting Requirements for Rotor Model

R	lotor Type	Dynamics	Control	Location	Orientation	
Propeller		No dynamics	collective or RPM	Front (Pull) or Rear (Pusher)	90 deg FWD tilt	
	Conventional main rotor	Flap / Lag / RPM	Collective 2 cyclic pitches	Top/center	Vertical (reference Small FWD tilt	
Rotor	Conventional tail rotor	Flap / RPM (MR dependent)	collective	Rear	±90 deg sideward tilt with small cant angle	
	Gimbal/Teeter ing main rotor	Flap Gimbal	Collective 2 cyclic pitches	Top/center	Vertical (reference) Small FWD tilt	
	Gimbal/Teeter ing tail rotor	Flap Gimbal	Collective	Rear	±90 deg sideward tilt with small cant angle	
	ABC (Advanced Blade Concept)	No dynamics	Collective 2 cyclic pitches	Top/center	Vertical Small FWD tilt	
	Ducted	No dynamics	Collective (thrust vectoring)	Design dependent	Design dependent	

KU 建國大學校 KONKUK UNIX Flight Dynamic Model (HETLAS)

Generalized Wing Model (for Rotorcrafts with Lift Compounding)

Unified Wing Models

Wing + Control Surface

Strip Theory

Biot-Savart Law

Airfoil aerodynamic data Table Lookup

Lift Increment Estimation

Lifting Line Theory

Wing-components modelling requirements

- Orientation of each wing can be defined with respect to the reference starboard main wing
- Many control surfaces can be allocated to the wing, some of which have the right or reversed deflection angles
- Airfoil can have the convectional orientation or the reversed one

Diversity in Wing Configurations is reflected in selecting Requirements for Wing Model

Wing Type	Control surfaces	Location	Orientation
Conventional main wing (starboard)	Aileron / flap (2 control surfaces)	Fuselage center	Horizontal with dihedral, sweep, and twist distribution along the span
Conventional main wing (port)	Aileron (reversely coupled) Flap (rightly coupled)	Fuselage center	Symmetric in x-z plane with respect to starboard side main wing
Conventional horizontal stabilizer	Elevator (1 control surfaces, independent)	Rear fuselage	Same as the starboard main wing but airfoil may be upside down orientation with specified attachment angle
Conventional vertical stabilizer	Rudder (1 control surfaces, independent)	Rear fuselage	±90 deg upward tilt from the reference airfoil may be upside down orientation with specified attachment angle
Wing with end plate	As specified	As specified	As specified
Others	As specified	As specified	As specified

KU REMITTIER Flight Dynamic Model (HETLAS)

Composition of Future Flight Dynamic Model (including Elastic Beam Model)

KU EMACHENKIK UNIX Flight Dynamic Analysis Model (HETLAS)

Trim Analysis Model

Trim Flight Category (for Trim Kinematical Equations)

- Rectilinear Flight : hover, vertical flight, side and rearward Flight, forward flight with sideslip and climb angle
- Turning Flight : coordinated/uncoordinated turn with flight path angle (Helical Turn)
- Auto-rotational Descent
- Bank-zero Trim (for Pilot's Attributes)
- Pull-up (instantaneous)
- Push-over (instantaneous)

Trim Methodology

- Harmonic Balance Method
- Periodic-Trimming Algorithm (PTA)
- Partial Periodic Trim Algorithm (PPTA)

Trim Equation (NAEs) Solvers

- Standard Newton Methods
- Quasi-Newton Methods
 - ✓ Broyden's good method
 - ✓ Broyden's bad method
 - ✓ Greensradt's 1st and 2nd method
 - Thomas optimal method
 - ✓ Martinez's column-updating method
 - ✓ Etc.

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{B}_k^{-1} \mathbf{f}(\mathbf{x}_k), \quad \mathbf{B}_k \approx \mathbf{J}(\mathbf{x}_k) = \frac{d\mathbf{f}(\mathbf{x}_k)}{d\mathbf{x}}$$

KU RONKUK UNIV. Flight Dynamic Analysis Model (HETLAS)

Linearization Analysis Model

Numerical Jacobean approximation using the Finite Difference Formula

Motion equations $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$ Trim solution $\mathbf{f}_{Trim} = \mathbf{f}_{Trim}(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{0}$

Derivation of Linear Model @ Trim Conditions $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$

$$\nabla_{x_j} \mathbf{f}(\mathbf{x}, \mathbf{u}) = \frac{\mathbf{f}(x_1, \dots, x_j + \Delta x_j, \dots, x_n, \mathbf{u}) - \mathbf{f}(x_1, \dots, x_j - \Delta x_j, \dots, x_n, \mathbf{u})}{2\Delta x_j}, \quad \mathbf{x}, \mathbf{f} \in \mathbb{R}^n, \quad \mathbf{u} \in \mathbb{R}^m$$
$$\nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}, \mathbf{u}) = \left(\nabla_{x_1} \mathbf{f}(\mathbf{x}, \mathbf{u}), \dots, \nabla_{x_n} \mathbf{f}(\mathbf{x}, \mathbf{u}) \right) = \mathbf{A} \in \mathbb{R}^{n \times n}$$
$$\nabla_{\mathbf{u}} \mathbf{f}(\mathbf{x}, \mathbf{u}) = \left(\nabla_{u_1} \mathbf{f}(\mathbf{x}, \mathbf{u}), \dots, \nabla_{u_m} \mathbf{f}(\mathbf{x}, \mathbf{u}) \right) = \mathbf{B} \in \mathbb{R}^{n \times m}$$

Reduced Order Model : Low-Order Equivalent (LOE) Model

Truncation method by ignoring the inter-axis coupling

$$\begin{pmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix} \rightarrow \quad \begin{pmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{pmatrix} \cong \begin{pmatrix} \mathbf{A}_{11} & 0 \\ 0 & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{B}_{11} & 0 \\ 0 & \mathbf{B}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{pmatrix}$$

Residualization (time-scale separation) method

$$\begin{pmatrix} \dot{\mathbf{x}}_{1} \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{pmatrix} + \begin{pmatrix} \mathbf{B}_{1} \\ \mathbf{B}_{2} \end{pmatrix} \mathbf{u}$$

$$\rightarrow \dot{\mathbf{x}}_{1} = \{ \mathbf{A}_{11} - \mathbf{A}_{12} (\mathbf{A}_{22})^{-1} \mathbf{A}_{21} \} \mathbf{x}_{1} + \{ \mathbf{B}_{1} - \mathbf{A}_{12} (\mathbf{A}_{22})^{-1} \mathbf{B}_{2} \} \mathbf{u}$$

$$\mathbf{x}_{1} = \mathbf{x}_{R}$$

$$\mathbf{x}_{2} = (\mathbf{x}_{F}, \mathbf{x}_{L}, \mathbf{x}_{I}, \mathbf{x}_{Q})^{T}$$

→ Residualization method is better suit for rotorcrafts due to high inter-axis coupling

KU EMACHENKI Flight Dynamic Analysis Model (HETLAS)

Simulation Analysis Model

Standard Explicit Time Integrator

- RTAM-3 : 3rd order Real-Time Adams-Moulton integrator
- RK-4 : 4th order Runge-Kutta time integrator
- RKF-45 : 5th order Runge-Kutta time integrator with step size control

Standard Implicit Time Integrator

- Crank-Nicolson Algorithm : 2nd Order
- Backward Difference Method : 3rd/ 4th Order Algorithm

Pseudo Spectral (PS) Time Integrator coupled with Piccard Method

Motion equations

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t), \quad \mathbf{x}(0) = \mathbf{x}_o$$

Nonlinear Algebraic Equations (NAEs)

$$0 = \mathbf{x}_0 + \frac{h}{2} \sum_{k=0}^{k=N} I_{jk} \mathbf{f}_k - \mathbf{x}_j \quad (j = 1, 2, \cdots, N) \leftarrow \mathbf{x}_j = \mathbf{x}_0 + \frac{h}{2} \sum_{k=0}^{k=N} I_{jk} \mathbf{f}_k$$

Applications of Piccard Fixed Point Iterative Method

$$\mathbf{x}_{j}^{(iter+1)} = \mathbf{x}_{0} + \frac{h}{2} \sum_{k=0}^{k=N} I_{jk} \mathbf{f}_{k}^{(iter)} \leftarrow \mathbf{f}_{k}^{(iter)} = \mathbf{f}(\mathbf{x}_{k}^{(iter)}, t_{k})$$

KU ENKIKUKUNI Flight Dynamic Analysis Model (HETLAS)

Point Performance (Fuel Independent) Analysis Model

- Hovering & Vertical Flight Performance
 - > OGE Hovering Limits @MCP, TOP
 - > IGE Hovering Limits @MCP, TOP
 - > Max. Vertical Climb Rate @MCP, TOP
- Forward Flight Performance
 - Max. Climb Rate @MCP
 - > OEI Service Ceiling @MCP
 - > Max. Cruise Speed @ MCP
 - > Never Exceed Speed Limits Vne
 - Flight Envelope
 - Max. Load Factor
 - Service Ceiling (max. RoC<100 ft/min)</p>
 - > Absolute Ceiling (max. RoC= 0 ft/min)

Engine Power	MCP: Maximum Continuous Power
Engine Failure	AEO: All Engine Inoperative
Ground Effect	OEI : One Engine Inoperative IGE : In-Ground Effect
	OGE: Out-of-Ground Effect

KU RONKUK UNIV. Flight Dynamic Analysis Model (HETLAS)

Point Performance (Fuel Independent) Analysis Model

Computer-Model Procedures for Point Performance Analysis

KU EMACHE KUNKUKUKUK Flight Dynamic Analysis Model (HETLAS)

Mission Performance (Fuel Dependent) Analysis Model: Mission Segments

14 Mission Performance Analysis Results

KU 建國大學校 Flight Dynamic Analysis Model (HETLAS)

Mission Performance (Fuel Dependent) Analysis Model: Mission Segments

Definition of Mission Segments using Way-point Data

 $\left\{\left(t_{j}, h_{j}, V_{G,j}, V_{ROC,j}\right)\right\}_{j=0}^{j=N_{WP}}$ Data for height, ground speed, and rate of climb

- **Trajectory Generation using spline interpolation of** h, V_G, V_{ROC}
- □ Time integration along the generated trajectory to get converged solutions of coupled mission-performance equations using PS-integrator

$$\frac{dm}{dt} = -SFC \times P$$

$$m(t) = m(t_0) - \int_{t_0}^{t_f} (SFC \times P) dt$$

$$\frac{dh}{dt} = V_{RoC}$$

$$h(t) = h(t_0) + \int_{t_0}^{t_f} V_{RoC} dt$$

$$R(t) = R(t_0) + \int_{t_0}^{t_f} |V_G| dt$$

KU EXAMPLE STATE Flight Dynamic Analysis Model (HETLAS)

Mission Performance (Fuel Dependent) Analysis Model: Mission Segments

Computer-Model Procedures of Mission Performance Analysis

Subroutine Mission Performance Analysis Routine I: Innut Q: Outr	
Call Aircraft Technical Data Preprocessing	
Contain Call Aerodynamic Table Reading Call Aircraft Configuration Data Call Analysis Parameter Setting Call Engine Data Preprocessing End Contain	1. Aircraft Data Processing & Analysis Option Selection
Call Mission Segment Definition (I: Number of Segment) (O: Mission Segment {1: Number of Segment})	2. Define Mission Profiles and Divide into Segments
Do I=1, Number of Segment Image: Do I=	3. Mission Segment Generation for Actual Analysis
Do J=1, Number of Max Iteration VS Call Trim Analysis (I: Waypoint (WP) information, O: Trim Results) Call Engine Module (I: Trim Results, O: SFC) Do Do Do Do Do Call Engine Module (I: Trim Results, O: SFC) Do Do Call Waypoint in Segment Call Waypoint Performance Calculation (I: Trim Results, SFC) (O: Derivatives of weight, height, range for J-th waypoint	$\phi_j(\tau) = \frac{g_{LGL}(\tau)}{(\tau - \tau_j)g'_{LGL}(\tau_j)}$ (1)
Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range Segmed (O: Updated weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range Segmed (O: Updated weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range Segmed (O: Updated weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range Segmed (O: Updated weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator (I: Derivatives of weight, height, range for all WP) Image: Sector of Call Pseudo Spectral integrator of Waypoint in Segment Image: Sector of Call Pseudo Spectral integrator of Waypoint in Segment Image: Sector of Call Pseudo Spectral integrator of Waypoint in Segment Image: Sector of Call Pseudo Spectral integrator of Waypoint in Segment Image: Sector of Call Pseudo Spectral integrator of Waypoint in Segment Image: Sector of Call Pseudo Spectral integrator of Waypoint in Segment Image: Sector of Call Pseudo Spectral integrator of Call Pseudo Spectral integrator of Call Pseudo Spectral integrator of C	4. Performance Analysis for i-th Segment $\mathbf{x}(\tau) \approx \sum_{k=0}^{N} \phi_k(\tau) \mathbf{x}(\tau_k) \qquad \mathbf{x}_{i+1}^{i+1} = \mathbf{x}_0 + \frac{t_f - t_0}{\sum} \sum_{k=1}^{N} I_{i,k} \mathbf{f}_{i}^{i}$
Image: Constraint of the state of the s	hen $\mathbf{f}(\mathbf{x}(t),t) \approx \sum_{k=1}^{N} \phi_k(\tau) \mathbf{f}(\mathbf{x}_k,t_k) \qquad \mathbf{f}_k^{i} = \mathbf{f}(\mathbf{x}_k^{i})$ $\mathbf{f}_k^{i} = \mathbf{f}(\mathbf{x}_k^{i})$
End Do End Subroutine	$\mathbf{x} = \begin{bmatrix} W_F & h & R \end{bmatrix}^{T}$
16	Iterative Pseudo-Spectral Integrator

KU REALEVENT Validation of Flight Dynamic Model (HETLAS)

Validation Examples

□ Validation of HETLAS: Example Rotorcrafts

V&V: Comparison with Flight Test Criteria: 1) FAA AC-120-63 2) GENHEL (Sikorsky 社) 3) Boeing V&V: Using Ref. (Flight test/Analysis) Criteria: FAA AC-120-63 Ref.: 1) AGARD GARTEUR Report 2) Published Papers

KU ROMERTE TWO Validation of Flight Dynamic Model (HETLAS)

Comparison of Trim and Control Response for Reference Helicopter

Comparison of Trim Results for Bo-105

C.-J. Kim, K.-C. Shin, C. Yang, I.-J. Cho, C.-D. and Yun, Y.-H., Kim, C.-J., Shin, K.-C., Yang, I.-J. Cho, Interface features of flight dynamic analysis program, HETLAS, for the development of helicopter FBW system, in: 1st Asian Australian Rotorcraft Forum and Exhibition 2012, 2012: pp. 12–15.

Comparison of Mission-Performance Analysis Results for Bo-105

J. An, Y.-S. Choi, I.-R. Lee, M. Lim, and C.-J. Kim, "Performance Analysis of a Conceptual Urban Air Mobility Configuration Using High-Fidelity Rotorcraft Flight Dynamic Model," International Journal of Aeronautical and Space Sciences, Jul. 2023, doi: 10.1007/s42405-023-00610-7.

Comparison of Mission-Performance Analysis Results for Bo-105

J. An, Y.-S. Choi, I.-R. Lee, M. Lim, and C.-J. Kim, "Performance Analysis of a Conceptual Urban Air Mobility Configuration Using High-Fidelity Rotorcraft Flight Dynamic Model," International Journal of Aeronautical and Space Sciences, Jul. 2023, doi: 10.1007/s42405-023-00610-7.

Endurance and Range Prediction

Validation of Bo-105 Model based on AC 120-63 - Helicopter Simulator Qualification

Table. AC 120 63 – Tolerance of trimmed flight control position and handling qualities.

Test	Tolerance	Comment
Level flight Performance and Trimmed Flight Control Position	Torque : ±3.0% Pitch Attitude : ±3.0° Control Position : ±5.0%	Forward Flight, Level (C, D)
Longitudinal Handing Qualities : Control Response	Pitch Rate : ±5.0% or ±2.0°/sec Pitch Attitude Change : ±10.0% or ±1.5°	Collective & Longitudinal , Level (B, C, D)
Lateral Handing Qualities : Control Response	Roll Rate : ±10.0% or ±3.0°/sec Roll Attitude Change : ±10.0% or ±3.0°	Level (B, C, D)
Directional Handing Qualities : Control Response	Yaw Rate : ±10.0% or ±2.0°/sec Yaw Attitude Change : ±10.0% or ±2.0°	Level (B, C, D)

KU EMACKEUNIN Validation of Flight Dynamic Model (HETLAS)

Validation of Bo-105 Model based on AC 120-63 - Helicopter Simulator Qualification

Fig. Forward flight trim result of BO-105 dynamic model

KU EMACKEUNIX Validation of Flight Dynamic Model (HETLAS)

Validation of Bo-105 Model based on AC 120-63 - Helicopter Simulator Qualification

[Bo-105 Data from :Padfield, Gareth D, Helicopter flight dynamics: the theory and application of flying qualities and simulation modelling, John Wiley & Sons, 2008]

Fig. 80knot – Lateral input 3211 response

KU EMACKUKUKU VAlidation of Flight Dynamic Model (HETLAS)

Validation of Bo-105 Model based on AC 120-63 - Helicopter Simulator Qualification

[Bo-105 Data from :Padfield, Gareth D, Helicopter flight dynamics: the theory and application of flying qualities and simulation modelling, John Wiley & Sons, 2008]

Fig. 80knot – Longitudinal input 3211 response

Fig. 80knot – tail collective input 3211 response

Application to KP-1 UAM (Urban Air Mobility) Model

J. An, Y.-S. Choi, I.-R. Lee, M. Lim, and C.-J. Kim, "Performance Analysis of a Conceptual Urban Air Mobility Configuration Using High-Fidelity Rotorcraft Flight Dynamic Model," International Journal of Aeronautical and Space Sciences, Jul. 2023, doi: 10.1007/s42405-023-00610-7.

2 Recent Progress in HETLAS Applications

Importance and Methodologies of MTE Analysis

Kinematically Exact Inverse Simulation Techniques

Direct Dynamic Simulation Approach to NOCP

3 Summary of Part 1

KU REMARKE Importance of MTE Analysis

Definition and Verification Methods of Mission-Task-Elements

- MTEs provide a basis for an overall assessment of the rotorcraft's ability to perform certain critical tasks.
- One mission requires many of different flight tasks (MTEs)
- Mission success highly depends on the rotorcraft's performance for each MTEs
- ADS-33E-PRF defines 23 MTEs for Rotorcraft Handling Qualities Requirements

ADS-33E-PRF : Table XIV. Requirements/verification matrix

	REQUIREMENT		VERIFICATION METHOD/EVENT				
NO.			P	C	F	S	
				D	F	V	
			R	R	R	R	
3.3	Hover and Low Speed						
3.3.1	Equilibrium Characteristics		Α	Α	Α	F	
3.3.2	Small-Amplitude Pitch (Roll) Attitude		Α	Α	Α	F	
3.11	Mission-Task-Elements			S	S	F	

Methods of Verification:

A – Analysis

- **S** Piloted Simulation
- F Flight Test
- **T** Testing, miscellaneous

Events:

SFR - System Functional Review

PDR - Preliminary Design Review

CDR - Critical Design Review

FFR - First Flight Readiness Review

SVR - System Verification Review

KU EXAMPLE Importance of MTE Analysis

Example MTE: Piroutte in Test Guide for ADS-33E-PRF

Performance – Pirouette

	GVE	DVE
DESIRED PERFORMANCE		
• Maintain a selected reference point on the rotorcraft within $\pm X$ ft of	10 ft	10 ft
the circumference of the circle.		
Maintain altitude within ±X ft:	3 ft	4 ft
• Maintain heading so that the nose of the rotorcraft points at the	10 deg	10 deg
center of the circle within $\pm X$ deg:		
• Complete the circle and arrive back over the starting point within:	45 sec	60 sec
• Achieve a stabilized hover (within desired hover reference point)	5 sec	10 sec
within X seconds after returning to the starting point.		
Maintain the stabilized hover for X sec	5 sec	5 sec

Maneuver Phases in MTEs and Rotorcraft Maneuverability/Agility

Maneuver Aggressiveness is defined by entry/exit times and the maximum amplitude

$$\Delta t_{entry} = t_{entry} - t_o \qquad \dot{\phi}_{max}, \dot{\theta}_{max}, \dot{\psi}_{max}$$
$$\Delta t_{exit} = t_f - t_{exit} \qquad \mathbf{a}_{max}$$

- Maneuverability is evaluated with Agility, which is defined with both
 - Maneuver Aggressiveness and Maneuver Precision
- Maneuverability is directly affected by the quantitative Handling-Qualities requirements which are defined in Para. 3.3~3.10 in ADS-33E PRF

Thus, MTE Analysis allows both direct evaluation of Rotorcraft maneuverability and indirect evaluation of quantitative (objective) requirements of ADS-33E PRF

KU REMITTIE Methodologies for MTE Analysis

Two General Approaches: Inverse Simulation / Nonlinear Optimal Control Analysis

(1) Inverse Simulation Approach

- Requires Accurate Prescription of Trajectory for a Specific MTE
- Only Applicable to Aircraft Maneuvers in Normal Operating States (no Engine Failure)
- Most of Available Algorithms suffer from Numerical Stability Problems
- You can refer to following papers for Historical Overview and Theoretical Details
- [1] Thomson, D.G., and Bradley, R., "Inverse simulation as a tool for flight dynamics research—Principles and applications," Progress in Aerospace Sciences, Vol. 42, 2006, pp. 174–210.
- [2] Lu,L., Murray-Smith, D.J., and Thomson, D.G., "Issues of numerical accuracy and stability in inverse simulation," Simulation Modelling Practice and Theory, Vol. 16, 2008, pp. 1350–1364.
- [3] Thomson, Douglas G.; Bradley, Roy, "Mathematical Definition of Helicopter Maneuvers," Journal of the American Helicopter Society, Volume 42, Number 4, 1 October 1997, pp. 307-309.
- [4] R. Celi, "Optimization-Based Inverse Simulation of a Helicopter Slalom Maneuver," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 2, 2000, pp. 289-297
- [5] Giulio Avanzini, Guido de Matteis, and Luciano M. de Socio. "Two-Timescale-Integration Method for Inverse Simulation", Journal of Guidance, Control, and Dynamics, Vol. 22, No. 3 (1999), pp. 395-401.
- [6] R.A. Hess, C. Gao, S.H. Wang, "A generalized technique for inverse simulation applied to aircraft manoeuvres," J. Guidance, Control Dynamics 14 (1991) 920–926.
- [7] Murray-Smith, D.J., "The inverse simulation approach: a focused review of methods and applications," Mathematics and Computers in Simulation, Vol. 53, 2000, pp. 239–247.

KU Restaure Methodologies for MTE Analysis

Two General Approaches: Inverse Simulation / Nonlinear Optimal Control Analysis

(2) Nonlinear Optimal Control Theory (NOCP: Nonlinear Optimal Control Problem)

- Adopt Trajectory Tracking Control Law when Trajectory is prescribed
- Applicable to Rotorcraft Maneuvers under Failures such as Engine Malfunction
- Extremely High Computing Time is required
- No methods are available at Present time for applications using Rotorcraft Math Models with Rotor and Inflow Dynamics due to Large KKT (Karush-Kuhn-Tucker) System in Direct Methods and the extremely poor robustness with Indirect Methods

Multiple-Shooting Method

32

Algorithm to solve NLP

2 Recent Progress in HETLAS Applications

Importance and Methodologies of MTE Analysis

Kinematically Exact Inverse Simulation Techniques

Direct Dynamic Simulation Approach to NOCP

3 Summary of Part 1

KU LENK KINE Kinematically Exact Inverse Simulation Technique

Recent Research on Rotorcraft Inverse Simulation Techniques at KKU: PIST & KEIST

- 2019. Chang-Joo Kim, Do Hyeon Lee, and Sung Wook Hur, "Efficient and Robust Inverse Simulation Techniques Using Pseudo-Spectral Integrator with Applications to Rotorcraft Aggressive Maneuver Analyses," International Journal of Aeronautical and Space Sciences, March 2019.
- 2020 Chang-Joo Kim, Seong Han Lee, and Sung Wook Hur, "Kinematically Exact Inverse Simulation Techniques with Applications to Rotorcraft Aggressive-Maneuver Analyses," International Journal of Aeronautical and Space Sciences, March 2020.

Problem Definition of General Inverse Simulation Problem to Find Control

$$\begin{aligned} & \text{Motion equations} \\ & \dot{\mathbf{v}} = \mathbf{f} / m - \mathbf{\omega} \times \mathbf{v} \\ & \dot{\mathbf{\omega}} = \mathbf{J}^{-1} \left\{ \mathbf{m} - \mathbf{\omega} \times (\mathbf{J} \mathbf{\omega}) \right\} \end{aligned} \qquad \mathbf{v} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \quad \mathbf{\omega} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}, \quad \mathbf{\phi} = \begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{aligned}$$

$$\begin{aligned} & \text{Prescribed Trajectory: Typically by} \\ & \text{Position Vector and Heading Angle} \\ & \mathbf{p} = \left(\mathbf{r}^{p}, \psi^{p} \right) \end{aligned} \qquad \mathbf{J} = \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{pmatrix}, \quad \mathbf{f} = \begin{pmatrix} f_{x} \\ f_{y} \\ f_{z} \end{pmatrix}, \quad \mathbf{m} = \begin{pmatrix} m_{x} \\ m_{y} \\ m_{z} \end{pmatrix} \end{aligned}$$

Inverse Simulation Problem: Find Flight Control to track the Prescribed Path

KU REALTY Kinematically Exact Inverse Simulation Technique

Kinematically Exact Motion Equations for Inverse Simulation in Inertial Frame

Using angular kinematics and navigation equations, we can get new form of motion equations

$$\begin{split} \boldsymbol{\omega} &= \mathbf{T}\dot{\boldsymbol{\varphi}} & \dot{\boldsymbol{\omega}} &= \dot{\mathbf{T}}\dot{\boldsymbol{\varphi}} + \mathbf{T}\ddot{\boldsymbol{\varphi}} \\ \mathbf{v} &= \mathbf{C}\dot{\mathbf{r}} & \dot{\mathbf{v}} &= \dot{\mathbf{C}}\dot{\mathbf{r}} + \mathbf{C}\ddot{\mathbf{r}} \\ \end{split}$$

$$\begin{aligned} \ddot{\mathbf{v}} &= \mathbf{C}^{-1}\left\{\mathbf{f} / m - \left(\mathbf{T}\dot{\boldsymbol{\varphi}}\right) \times \left(\mathbf{C}\dot{\mathbf{r}}\right) - \dot{\mathbf{C}}\dot{\mathbf{r}}\right\} \\ \ddot{\boldsymbol{\varphi}} &= \mathbf{T}^{-1}\left[\mathbf{J}^{-1}\left\{\mathbf{m} - \left(\mathbf{T}\dot{\boldsymbol{\varphi}}\right) \times \left(\mathbf{J}\mathbf{T}\dot{\boldsymbol{\varphi}}\right)\right\} - \dot{\mathbf{T}}\dot{\boldsymbol{\varphi}}\right] \end{aligned}$$

Using the prescribed trajectory information $(\mathbf{r}^{p}, \dot{\mathbf{r}}^{p}, \ddot{\mathbf{r}}^{p}, \psi^{p}, \dot{\psi}^{p}, \ddot{\psi}^{p})$

We can get kinematically exact motion equations in DAE (Differential-Algebraic-Equation) form (s)

- $\ddot{\mathbf{x}} = \overline{\mathbf{m}}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t) \in R^2$ $\mathbf{0} = \overline{\mathbf{f}}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t) \ddot{\mathbf{r}}^p \in R^3$ $\mathbf{0} = \overline{m}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t) \ddot{\psi}^p \in R$
- : Two Ordinary differential equations : Nonlinear algebraic equations where $\mathbf{x} = \begin{pmatrix} \phi \\ \theta \end{pmatrix}$ $\mathbf{u} = \begin{pmatrix} \delta_0 \\ \delta_{1C} \\ \delta_{1C} \\ \delta_{1C} \\ \delta_{--} \end{pmatrix}$

Control Equations from 2nd and 3rd equations represents a Index 1 DAE system

$\left(\frac{\partial \overline{\mathbf{f}}}{\mathbf{f}}\right)$		$\left(\frac{\partial \overline{\mathbf{f}}}{\mathbf{\dot{\mathbf{f}}}}\right)$	$\partial \overline{\mathbf{f}} = \overline{\mathbf{m}}$	$\perp \partial \overline{\mathbf{f}}_{-}$	$\left(\frac{\mathbf{r}^{p}}{\mathbf{r}^{p}} \right)$
∂u	$\dot{\mathbf{n}} = -$	∂x	∂x́	∂t	L
$\partial \overline{m}$	u –	$\partial \overline{m}_{\mathbf{i}}$	$\partial \overline{m}$	$\partial \overline{m}$;;; p
$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{u}}\right)$		$\sqrt{\partial \mathbf{x}} \mathbf{x}$	$+\frac{1}{\partial \dot{\mathbf{x}}}$	$\frac{1}{\partial t}$	$-\psi$

since the leading matrix is nonsingular in general rotorcraft flight dynamics

KU RENERTIE Kinematically Exact Inverse Simulation Technique

Solution using Pseudo-spectral (PS) time integrator and Quasi-Newton Method

- $\ddot{\mathbf{x}} = \overline{\mathbf{m}}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t) \in R^{2}$ $\mathbf{0} = \overline{\mathbf{f}}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t) \ddot{\mathbf{r}}^{p} \in R^{3}$ $0 = \overline{m}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}, t) \ddot{\psi}^{p} \in R$
- : Ordinary differential equations (ODEs)
- : Nonlinear algebraic equations (NAEs)
- : Nonlinear algebraic equations (NAEs)

Direct Application of PS time integrator to 2nd order ODEs with Piccard Method

$$\dot{\mathbf{x}}_{j}^{(iter+1)} = \dot{\mathbf{x}}_{0} + \frac{t_{f} - t_{0}}{2} \sum_{k=0}^{k=N} I_{jk} \overline{\mathbf{m}}_{k}^{(iter)} , \quad (j = 1, 2, \dots, N)$$
$$\mathbf{x}_{j}^{(iter+1)} = \mathbf{x}_{0} + \frac{t_{f} - t_{0}}{2} \sum_{k=0}^{k=N} I_{jk} \dot{\mathbf{x}}_{j}^{(iter)}$$

Quasi-Newton Method for NAEs

 $\mathbf{g}_{1,j} = \overline{\mathbf{f}}_j - \ddot{\mathbf{r}}_j^p = \mathbf{0}$ $g_{2,j} = \overline{m}_j - \ddot{\psi}_j^p = \mathbf{0}$

You can refer to Reference 2020 for a detailed implementation in computer model.
Application to Bop-up MTE

Case	IN	N _h	$\Delta t_{\rm avg}$ (s)	CPU time (Intel i7)/It _{avg}		
				KEIST formulation	Conventional formulation	
1	4	20	0.1250	Failed at first segment		
2	4	40	0.0625	203/8.6	223/10.7	
3	4	60	0.0417	141/7.7	170/9.8	
4	4	80	0.0313	147/7.4	183/8.1	
5	4	100	0.0250	155/6.5	201/8.1	
6	4	120	0.0208	186/7.2	211/7.7	

N = number of quadrature points Nh = number of time horizon segments

Application to Bop-up MTE

Application to Helical Turn MTE

K = number of waypoint data

Case	K_0	Kentry	K _{steady}	K _{exit}	K_{f}	$K = K_{\text{total}}$
1	5	4	25	4	5	43
2	5	10	50	10	5	80
3	5	30	150	30	5	220
4	5	60	300	60	5	430

2 Recent Progress in HETLAS Applications

Importance and Methodologies of MTE Analysis

Kinematically Exact Inverse Simulation Techniques

Direct Dynamic Simulation Approach to NOCP

KU ENACK LINIX Direct Dynamic Simulation Approach (DDSA) to NOCP

Publications on Nonlinear Optimal Control Approaches to Rotorcraft MTE Analysis

- [1] CJ Kim, J Lee, YH Byun, and YH Yu, "Nonlinear Optimal Control Analysis of Helicopter Maneuver Problems Using the Indirect Method," Transactions of the Japan Society for Aeronautical and Space Sciences, 2008.
- [2] Chang-Joo Kim, Sang Kyung Sung, Soo Hyung Park, Sung-Nam Jung and Kwanjung Yee, "Selection of Rotorcraft Models for Application to Optimal Control Problems," Journal of Guidance Control and Dynamics, Vol. 31, No. 5, September–October 2008
- [3] Chang-Joo Kim, Chang-Deok Yang, Seung-Ho Kim, and Changjeon Hwang, "The Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part II. Applicability of High Fidelity Helicopter Models," Journal of the Korean Society for Aeronautical & Space Sciences 36(1), 2008
- [4] Chang-Joo Kim, Chang-Deok Yang, Seung-Ho Kim, and Changjeon Hwang, "Analysis of Helicopter Maneuvering Flight Using the Indirect Method - Part I. Optimal Control Formulation and Numerical Methods," Journal of the Korean Society for Aeronautical & Space SciencesJanuary 2008.
- [5] Min-Jae Kim, Ji-Seung Hong, and Chang-Joo Kim, "Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method," International Journal of Aeronautical and Space Sciences, March 2010.
- [6] Chang-Joo Kim, Sangkyung Sung, Soo Hyung Park, et al., "Numerical Time-Scale Separation for Rotorcraft Nonlinear Optimal Control Analyses," Journal of Guidance Control and Dynamics. 2014, Vol.37, No.2, p.658.
- [7] Kim C-J, Sung SK, "A comparative study of transcription techniques for nonlinear optimal control problems using a pseudo-spectral method," International Journal of Aeronautical and Space Sciences, Vol.16, No.2, pp264–277, 2015
- [8] Jun-young An, Chang-Joo Kim, Sungwook Hur, and Seong han Lee, "Category A Takeoff and Landing Trajectory Optimization for Transport Category Rotorcraft Certification," Journal of Institute of Control Robotics and Systems, December 2019
- [9] Yong Hyeon Nam, Chang-Joo Kim, Seong Han Lee, and Yi Young Kwak, "Direct Dynamic-Simulation Approach to Trajectory Optimization for Rotorcraft Category-A Maneuver Procedures," International Journal of Aeronautical and Space Sciences, Vol.22, pp.648~662, November 2021

KU REALE UNIX Direct Dynamic Simulation Approach (DDSA) to NOCP

Nonlinear Optimal Control Problem (NOCP)

$$\min_{\mathbf{x},\mathbf{u}} J(\mathbf{x},\mathbf{u},t) = \phi(\mathbf{x}(t_0), t_0, \mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} f_{obj}(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

subject to $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$
 $\mathbf{h}(\mathbf{x}) = \mathbf{0}$
 $\mathbf{g}(\mathbf{x}) \le 0$

- J : total cost function
- ϕ : cost function for Initial and final conditions
- f_{obj} : integral cost function
- t_0 : initial time
- t_f : final time
- **h** : equality constraint function
- g : inequality constraint function
- **x** : system states
- **u** : system control
- **f** : system forcing function

[Remark] Direct Method typically has much higher robustness than Indirect Method

KU KONKLAUKE Direct Dynamic Simulation Approach (DDSA) to NOCP

Typical Procedures in Direct Method

The transcription (Discretization) intends to convert NOCP into NLP (Nonlinear Programming Problem) by applying time integrator over all computational time nodes like

$$J = \phi(\mathbf{x}_{0}, t_{0}, \mathbf{x}_{f}, t_{f}) + \frac{t_{f} - t_{0}}{2} \sum_{j=0}^{j=N} w_{j} f_{obj}(\mathbf{x}_{j}, \mathbf{u}_{j}, t_{j})$$
$$\mathbf{x}_{j} = \mathbf{x}_{0} + \frac{t_{f} - t_{0}}{2} \sum_{j=0}^{j=N} I_{jk} \mathbf{f}(\mathbf{x}_{j}, \mathbf{u}_{j}, t_{j})$$

Thus, the system dynamics are converted into equality constraints at NLP. In addition, the NLP solver must compute unknowns design variables consisting of system states and controls at all time nodes.

$$\left\{\mathbf{x}_{j},\mathbf{u}_{j}\right\}_{j=0}^{j=N}$$

KU KONKIK UNIX Direct Dynamic Simulation Approach (DDSA) to NOCP

Conventional direct methods suffer from serious curse of dimensionality when using a high-fidelity rotorcraft math model due to

- Rotor dynamics (even for flap and lead-lag dynamics in rigid-blade models
- Inflow dynamics

Since the discretization of these dynamics typically require over 36 time nodes per one rotor revolution to obtain accurate time integrations of dynamical equations. Thus, the size of KKT systems is dramatically increased as the time horizon of NOCP is increased

Two Baseline concepts in developing DDSA

- The system states are uniquely determined by the control inputs. Thus, the states are possibly excluded from the design variables in NLP during the transcription process. In addition, the system dynamics are simply satisfied using an accurate time integrator
- (2) Computational efficiency can be enhanced through the control parametrization using Hermit spline interpolation.

Thus, the KKT system can be derived only for system controls, which can dramatically reduced the number of both design variables and constraint functions.

KU REMARKANT Direct Dynamic Simulation Approach (DDSA) to NOCP

Comparison of Pseudo-Spectral transcription methods : Traditional method vs DDSA

KU REALFYRE Direct Dynamic Simulation Approach (DDSA) to NOCP

Control Interpolation using Hermit Spline Interpolation for DDSA

KU REMARKANT Direct Dynamic Simulation Approach (DDSA) to NOCP

Comparison of Computational Efficiency for Simple Problem : Traditional method vs DDSA

NOCP: Soft lunar landing of a spacecraft

min
$$J = \int_{0}^{t_{f}} u dt$$

s.t. $\dot{x}_{1} = x_{2},$
 $\dot{x}_{2} = -1.5 + u$
 $x_{1}(0) = 10, x_{2}(0) = -2$
 $x_{1}(t_{f}) = 0, x_{2}(t_{f}) = 0$
 $0 \le u \le 3$

Exact solution

$$u = \begin{cases} 0 & t < t_s^* \\ 3 & t_s^* < t \end{cases}, \quad \left(t_s^* = \frac{t_f^*}{2} + \frac{v_0}{3} \right)$$

Computational Nodes

	PS Method	DDSA		
Computational Nodes	-	4		
Collocation Nodes	76	26	System Sizes: 2.29	
Size of the KKT system	536	234		

KU EMACKEUNIN Direct Dynamic Simulation Approach (DDSA) to NOCP

Comparison of Computational Efficiency for Simple Problem : Traditional method vs DDSA

Pseudo Spectral Method

Direct Dynamic Simulation Approach

KU REALTY Direct Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using Point-Mass Model

Model parameter				
parameter	OH-58A	UH-60		
Image				
Engine model	Single engine	Twin engines		
$f_{e} (equivalent flat plate area)$ m (helicopter mass) R (main rotor radius) σ (solidity) C _{d0} (drag coef.) a (lift curve) I _R (main rotor MOI) H _R (main rotor height) Ω_{0} (ref, rotor RPM) g (gravity coef.) P _{ref} (ref. power) P _{OEI} (OEI power) T _o (time const.)	1.2077m ² 1360.8 kg 5.3736 m 0.048 0.0087 5.73 911.10 kg.m ³ 2.0 m 353 RPM 9.836 kg.m/s ² 354hp -	2.7871 m ² 7484.27 kg 8.1777 m 0.0821 0.012 5.73 9572.07 kg.m ³ 5.13 m 257.1 RPM 9.836 kg.m/s ² - 1656hp 1 5		

[Ref : Harris, Michael J., "Analytical Determination of a Helicopter Height Velocity Diagram" (2018). *Theses and Dissertations*. 1770.]

[Ref. : Robert T.N. Chen, Yiyuan Zhao, "Optimal Trajectories for the Helicopter ig One-Engine-Inoperative Terminal-Area Operation," NASA/TM-96-110400, 1996]

KU REALE TO Direct Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using Point-Mass Model

Autorotational Landing Problem : NOCP Problem to minimize Touchdown speed

- Objective function $J = q_{fw}w_f + \frac{1}{2}Q_{fw}w_f^2 + \frac{1}{2}Q_{fu}u_f^2$ where $q_{fw} = 40, Q_{fw} = 80, Q_{fu} = 80$ - Initial/final constraints $\mathbf{X}_0 = \mathbf{X}_{trim}$ $h_{f} = 0$ $0m / s \le u_f \le 7.3152m / s$ $0m / s \le w_f \le 0.9144m / s$ $-10.0 \deg \le \alpha_f \le 3.65 \deg$ - Global inequality constraint $w \le 9.144 m / s$ $0m \le h$ $0 \le C_T \le 0.15\sigma$ $-30 \deg \le \alpha \le 30 \deg$
 - $-25\sigma \deg/\sec \le \dot{C}_T \le 25\sigma \deg/\sec$
 - $-16 \deg/\sec \le \dot{\alpha} \le 16 \deg/\sec$

- 1. Entry : Recover 100% RPM while Stabilizing the aircraft
- 2. Steady Descent : increase the translation kinetic energy as much as possible.
- 3. Flare maneuver : reduce the speed and sink rate by increasing the collective pitch and by tilting rotor disc backward
- 4. Final landing : safe landing while keeping the attitude suitable for landing

[Ref. : Edward N. Bachelder, Bimal L.Aponso,"An Autorotation Flight Director for Helicopter Training," the American Helicopter Society 59th Annual Forum proceedings, Phoenix, Arizona, May 6–8, 2003.]

Applications of DDSA using Point-Mass Model

Autorotational Landing Problem : OH-58A, at low altitude hover point

Comparison of numerical results with flight test data.

	Numerical result	Flight test data
Gross weight	1360.777 kg	1382.55 kg
Wind condition	0 knots	<3 knots
Flight time	4.3107 sec	8.1 sec
Max. sink rate	6.8796 m/s	6.096 m/s
Vertical Speed at T.D	0 m/s	0 m/s
Rotor RPM at T.D	242RPM	217 RPM
Min. Collective pitch	3.7665 deg	5.05 deg
Collective pitch at T.D	12.5375 deg	14.8 deg
Computation time	18.60 sec	

[Ref. of flight test data: L. W. Dooley and R. D. Yeary, "Flight Test Evaluation of the High Inertia Rotor System," Technical report, U.S. Army Research and Technology Laboratories (AVRADCOM), 1979]

KU RENER LINE Direct Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using Point-Mass Model

Rejected Take-Off (RTO) Procedure after One Engine Failure [Bo-105 Flight Manual]

Fig. Trajectory of normal take-off procedure (Up) and RTO procedure (Down).

KU REALE Direct Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using Point-Mass Model

RTO (Rejected Take-Off) Performance : Clear Heliport, 1sec Pilot delay, V=40 knots

KU REMARKAGE MARKET Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using Point-Mass Model

RTO (Rejected Take-Off) Performance : Elevated Heliport, 1sec Pilot delay, height variation

Applications of DDSA using Point-Mass Model

Height-Velocity (H-V) Diagram (Dead-Man Curve)

NOCP formulation for H-V Diagram

[Ref :Harris, M. J., Kunz, D. L., & Hess, J. A. (2018). Analytical Determination of a Helicopter Height-Velocity Curve. 2018 Modeling and Simulation Technologies Conference.]

KU LEMIX Methodologies for MTE Analysis

Applications of DDSA using Point-Mass Model

250

200

Height(ft) 120

100

50

Prediction H-V Diagram for OH-58A Model

KU 建國大學校 Direct Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using High-Fidelity F-16 Model

Double Immelmann Turn (Ref: US Air Force Aircraft Demonstrations)

- Entry phase: 450knots Level flight
- 180 deg Heading change through Longitudinal loop maneuver
- 180 deg bank change
- Repeat above procedure
- Use 100 % throttle after entry and use throttle greater than 77% after Apex.

[Ref 1] Brian L. Stevens, ^{*P*}Aircraft Control and Simulation 3rd Edition _J, WILEY, November 2015 [Ref 2] Nouven L. T. Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With Relayed Longitud

[Ref 2] Nguyen L. T, Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With Relaxed Longitudinal Static Stability, NASA Technical Paper 1538.
 [Ref 3] Misawa Airbase U.S. Air Force, (2021). PACAF F-16 Demonstration Team Maneuvers Package 2021, U.S Air Force, 23 October 2014, AIR FORCE AIRCRAFT DEMONSTRATIONS (A-10, F-15, F-16, F-22)

Applications of DDSA using High-Fidelity F-16 Model

High-Fidelity F-16 Model: opened at NASA Homepage

F-16 Configuration Data			
Weight	20,494 lb		
WingSpan	32 ft 8 in		
Wing area	300 ft ²		
Airfoil	NACA 64A204		
ΜΤΟΨ	42,300 lb		
XCG	35.0% MGC		
MAC	11.32 ft		
I _{xx}	9496 Slug ft ²		
l _{yy}	55814 Slug ft ²		
I _{zz}	63100 Slug ft ²		
l _{zx}	982 Slug ft ²		
Elevator Deflection	-25 deg to 25 deg		
Aileron Deflection	-21.5 deg to 21.5 deg		
Rudder Deflection	-30 deg to 30 deg		

[Ref 1] Brian L. Stevens, ^{*P*}Aircraft Control and Simulation 3rd Edition _J, WILEY, November 2015

[Ref 2] Nguyen L. T, Simulator Study of Stall/Post-Stall Characteristics of a Fighter Airplane With Relaxed Longitudinal Static Stability, NASA Technical Paper 1538.
 [Ref 3] Misawa Airbase U.S. Air Force, (2021). PACAF F-16 Demonstration Team Maneuvers Package 2021, U.S Air Force, 23 October 2014, AIR FORCE AIRCRAFT DEMONSTRATIONS (A-10, F-15, F-16, F-22)

KU 建國大學校 Direct Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using High-Fidelity F-16 Model

NOCP Formulation of Double Immelmann Turn

min
$$J = \frac{1}{2} \int_0^{t_f} \left[\mathbf{x}_{diff}^T(t) \mathbf{Q}(t) \mathbf{x}_{diff}(t) + \mathbf{u}_{diff}^T(t) \mathbf{R}(t) \mathbf{u}_{diff}(t) \right] dt$$

s.t.

Dyanmic Constraints:	$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$	
Inequality Constraints:	$\mathbf{u} \leq \mathbf{u}_{\max}$,	$\mathbf{u} \ge \mathbf{u}_{\min}$
Equality Constraints:	$\mathbf{x}(0) = \mathbf{x}_{trim},$	$\mathbf{u}(0) = \mathbf{u}_{trim}$

where

$$t_{f} \text{ is fixed}$$

$$\mathbf{x}_{diff}(t) = \mathbf{x}(t) - \mathbf{x}_{ref}(t), \quad \mathbf{u}_{diff} = \mathbf{u}(t) - \mathbf{u}_{ref}$$

$$\mathbf{x} = (u, v, w, p, q, r, \phi, \theta, \psi, V_{T}, \alpha, \beta)^{T}$$

$$\mathbf{u} = (u_{ele}, u_{ail}, u_{rud}, u_{thr})^{T}$$

$$\mathbf{Q} = diag(0, 0, 0, w_{p}, w_{q}, w_{r}, w_{\phi}, w_{\theta}, w_{\psi}, w_{V_{T}}, 0, 0)$$

$$\mathbf{R} = diag(w_{ele}, w_{ail}, w_{rud}, w_{thr})$$

KU REALEVENT Direct Dynamic Simulation Approach (DDSA) to NOCP

Applications of DDSA using High-Fidelity F-16 Model

DDSA Results for Double Immelmann Turn

2 Recent Progress in HETLAS Applications

Importance and Methodologies of MTE Analysis

Kinematically Exact Inverse Simulation Techniques

Direct Dynamic Simulation Approach to NOCP

3 Summary of Part 1

Recent Research Progresses in Rotorcraft Flight Dynamics and Autonomous Flight Control at KKU

Part 1: Rotorcraft Flight Dynamics

KU KUKKKKK Summary of Research on Rotorcraft Flight Dynamics

HETAS Math Model

- The rotor and wing models are generalized for HETLAS applications to Advanced rotorcraft configuration like the tiltrotor aircraft and coaxial-prop rotorcraft.
- As primary functions of HETLAS, the trim, linearization and simulation routines are addressed.
- The trim mover function has been introduced for robust point and mission performance analyses.
- The coupled mission-performance-equation has been effectively solved using the pseudo-spectral integrator for the mission segment approach.
- The validation results for the fidelity of HETLAS has been presented.

$$\left\{\left(t_{j},h_{j},V_{G,j},V_{ROC,j}
ight)
ight\}_{j=0}^{j=N_{RP}}$$
 Data for height, ground speed, and rate of climb

□ Trajectory Generation using spline interpolation of $h_{s}V_{c}V_{ROC}$

□ Time integration along the generated trajectory to get converged solutions of coupled mission-performance equations using PS-integrator

64

KU RONKUK UNIX Summary of Research on Rotorcraft Flight Dynamics

Kinematically Exact Inverse Simulation Techniques (KEIST)

- The importance of maneuver analyses during the rotorcraft development has been emphasized.
- Two different approaches were introduced
 - (1) Inverse simulation approach (2) Nonlinear optimal control approach
- Index 1 DAE (Differential-Algebraic Equation) systems have been derived by using
 (1) Motion equations represented using the inertial states
 - (2) Exact trajectory information obtained using the 7-th order spline interpolation
- KEIST has effectively solved the DAE system by using
 - (1) Quasi-Newton method for algebraic equations
 - (2) the PS integrator coupled with the Piccard method
- A series of applications showed efficiency and robustness of KEIST

Summary of Research on Rotorcraft Flight Dynamics KU 建國大學校 KONKUK UNIV.

0.3

0 1

-0.1

Kinematically Exact Inverse Simulation Techniques (KEIST)

N = number of quadrature points Nh = number of time horizon segments

147/7.4

155/6.5

186/7.2

183/8.1

201/8.1

211/7.7

0.0313

0.0250

0.0208

80

100

120

4

4

time(sec)

30 40

30

time(sec)

30 40 50

KU RURATE Summary of Research on Rotorcraft Flight Dynamics

Direct Dynamic Simulation Approach (DDSA) to Rotorcraft Aggressive Maneuver Analysis

- The efficient DDSA has been developed using the following two basic concepts.
 - (1) The system states are uniquely determined by the control inputs.
 - (2) Computational efficiency can be enhanced using controls interpolated with Hermit spline.
- The effectiveness of DDAS has been proved through a series of applications.
 - Soft lunar landing problem of a spacecraft
 - ✓ Autorotational Landing Problem using a point-mass model
 - ✓ Rejected Take-Off (RTO) Procedure after One Engine Failure
 - ✓ Estimation of Height-Velocity (H-V) Diagram (Dead-Man Curve)
 - ✓ Double Immelmann Turn analysis using the high-fidelity F-16 model

KU #MACHENA Summary of Research on Rotorcraft Flight Dynamics

Direct Dynamic Simulation Approach (DDSA) to Rotorcraft Aggressive Maneuver Analysis

Double Immelmann Turn (Ref: US Air Force Aircraft Demonstrations)

- Entry phase: 450knots Level flight
- 180 deg Heading change through Longitudinal loop maneuver
- 180 deg bank change
- Repeat above procedure
- Use 100 % throttle after entry and use throttle greater than 77% after Apex.

End of Part 1 Thank You !!

Recent Research Progresses in Rotorcraft Flight Dynamics and Autonomous Flight Control at KKU

2024. 02 Prof. Chang-Joo Kim (Konkuk University, Seoul, Korea)

Recent Research Progresses in Rotorcraft Flight Dynamics and Autonomous Flight Control at KKU

Part 2: Rotorcraft Autonomous Flight Control System

2024. 02 Prof. Chang-Joo Kim (Konkuk University, Seoul, Korea)

Questions to be Answered

What is the Autonomous FCS ?

What is the required Autonomous FCS Structure?

What is the Functional Requirements for the Autonomous FCS ?

What we have for the Design and Development of the Autonomous FCS ?

What is the Best KKU Approach to the Autonomous FCS ?

We spent around one year finding answers to these questions !!

Good References

- [Ref 1] Farid Kendoul, "Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems," Journal of Field Robotics, 2012, No. 29, Vol. 2, pp 315-378.
- [Ref 2] Takahashi, Marc D., et al. "Autonomous Rotorcraft Flight Control with Multilevel Pilot Interaction in Hover and Forward Flight." Journal of the American Helicopter Society 62.3 (2017): 1-13.

Kendoul's Classifications of 11 Autonomy Levels (ALs)

	LEVEL	LEVEL DESCRIPTOR	GUIDANCE	NAVIGATION	CONTROL	ESI	EC	M
ſ	10	Fully Autonomous	Human-level decision-making, accomplishment of most missions without any interven- tion from ES (100% ESI), cognizant of all within the operation range.	n-making, of most y interven- h(& ESI), fast SA that outperforms human SA in extremely complex age. Mutual and a situations. Same or better con performance as for a j aircraft in the same situations. Same or better con performance as for a j aircraft in the same situations.		roaching 100% ESI	cdre me environment	highest complexity.
	9	Swarm Cognizance and Group Decision Making	Distributed strategic group planning, selection of strategic goals, mission execution with no supervisory assistance, negotiat- ing with team members and ES.	Long track awareness of very complex environments and situations, inference and anticipa- tion of other agents intents and strategies, high-level team SA.	Ability to choose the appro- priate control architecture based on the understanding of the current situation/cont- ext and future consequences.	ESI app	onment e	levito missions
	8	Situational Awareness and Cognizance	Reasoning and higher level strategic decision-making, strategic mission planning, most of supervision by RUAS, choose strategic goals, cognizance.	Conscious knowledge of complex environments and situations, inference of self/others intent, anticipation of near-future events and consequences (high fidelity SA).	Ability to change or switch between different control strategies based on the understanding of the current situation/context and future consequences.	high level	difficult envir	orotine high come
ſ	7	RT Collaborative Mission Planning	Collaborative mission planning and execution, evaluation and optimization of multi-vehicle mission performance, allocation of tactical tasks to each agent.	Combination of capabilities in levels 5 and 6 in highly complex, adversarial and uncertain environ- ment, collaborative mid fidelity SA.	same as in previous levels (no-additional control capabilities are required)			ions collab
	6	Dynamic Mission Planning	Reasoning, high-level decision making, mission driven decisions high adaptation to mission changes, tactical task allocation, execution monitoring.	Higher-level of perception to recognize and classify detected objects/events and to infere some of their attributes, mid fidelity SA.	same as in previous levels (no-additional control capabilities are required)	vel ESI	nvironment	-functional miss
L	5	RT Cooperative Navigation and Path Planning	Collision avoidance, cooperative path planning and execution to meet common goals, swarm or group optimization.	Relative navigation between RUAS, cooperative perception, data sharing, collision detection, shared low fidelity SA.	Distributed or centralised flight control architectures, coordinated maneuvers.	mid le	moderate e	mplexity multi
ſ	4	RT Obstacle/Event Detection and Path Planning	Hazard avoidance, RT path planning and re-planning, event driven decisions, robust response to mission changes.	Perception capabilities for obsta- cle, risks, target and environment changes detection, RT mapping (optional), low fidelity SA.	Accurate and robust 3D trajectory tracking capability is desired.			midco
	3	Fault/Event Adaptive RUAS	Health diagnosis, limited adaptation, onboard conservative and low-level decisions, execution of pre-programmed tasks.	Most health and status sensing by the RUAS, detection of hardware and software faults.	Robust flight controller, reconfigurable or adaptive control to compensate for most failures, mission and environment changes.		nt	
	2	ESI Navigation (e.g., Non-GPS)	Same as in Level 1	All sensing and state estimation by the RUAS (no ES such as GPS), all perception and situation awareness by the human operator.	Same as in Level 1	w level ESI	nple environne	ow level tasks
l	1	Automatic Flight Control	Pre-programmed or uploaded flight plans (waypoints, reference trajectories, etc.), all analyzing, planning and decision-making by ES.	Most sensing and state estimation by the RUAS, all perception and situational awareness by the human operator.	Control commands are computed by the flight control system (automatic control of the RUAS 3D pose).	4	sh	4
	0	Remote Control	All guidance functions are performed by external systems (mainly human pilot or operator)	Sensing may be performed by the RUAS, all data is processed and analyzed by an external system (mainly human).	Control commands are given by a remote ES (mainly human pilot).	0% ESI	lowest EC	lowest MC

Autonomy

The condition or quality of being self governing

Autonomy Level (AL)

A set of progressive indices, typically numbers and/or names, identifying a UAS capability of performing autonomously assigned mission.

AL characteristics

ALs 1-4: Single Vehicle

ALs 5-7: Multi Vehicles

Als 8-10: High-level/Fully Autonomous

Required Functions

Guidance Function

Real-time Path Planning : Rapidly Exploring Random Trees(RRT) / PRM (Probability Road Map) (AL 4)

Navigation Function

IMU/GPS integrated with Digital map-based / Use environmental information from outside sources(AL 3~4)

Control Function

Real-time Trajectory-Tracking Control (AL 3~4)

[Ref 1] Farid Kendoul, "Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems,"

Kendoul's Proposition for UAS Autonomous FCS Structure

Rotorcraft Unmanned Aerial Vehicle(RUAV)

<u>A powered rotorcraft</u> that does not require an onboard crew, <u>can operate with some degree of autonomy</u>, and can be expendable or reusable.

Rotorcraft Unmanned Aerial or Aircraft System(RUAS)

<u>A RUAS is a physical system</u> that includes <u>a RUAV</u>, <u>communication architecture</u>, and a ground control station with no human element aboard any component.

Navigation System(NS): Perception & State Estimation

The process of monitoring and controlling the movement of a craft or vehicle from one place to another.

Guidance System(GS)

The "driver" of a RUAS that exercises **Mission/Path planning and decision-making functions** to achieve assigned missions or goals.

Autonomous Flight Control System(AFCS)

The process of manipulating the inputs to a dynamic system to obtain a desired effect on its outputs without a human in the control loop.

[Ref 1] Farid Kendoul, "Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems,"

KU Research

Autonomous FCS Structure of RASCAL JUH-60A Black Hawk (US Army)

- Multi-Level Autonomy
 - ✓ Fully Coupled Autonomous Mode
 - ✓ Additive Control Mode
 - ✓ Decoupled ACAH Mode
 - ✓ Pilot Interaction with Mode
 - ✓ Control System Design with Mode Transitions
- Mission S/W
 - ✓ Mission Manager/Operator Interface
 - ✓ Obstacle Field Navigation (OFN)
 - ✓ Safe Landing Area Determination (SLAD)
 - ✓ Path Generation
 - ✓ Vector Command
- Autonomous Flight Control S/W (AFCS)
 - ✓ Waypoint Control
 - ✓ Tracking Control
 - ✓ Inner-Loop Control

[Ref 2] Takahashi, Marc D., et al. "Autonomous Rotorcraft Flight Control with Multilevel Pilot Interaction in Hover and Forward Flight."

Autonomous FCS Structure of RASCAL JUH-60A Black Hawk (US Army)

- OFN: Obstacle Field Navigation, 조종사가 지정한 목적지까지 지형/장애물 회피가 가능한 비행경로를 LADAR 를 이용생성 후 AFCS에 제공
- SLAD: Safe Landing Area Determination, 3차원 지형 정보로부터 착륙지 요구조건을 충족하는 착륙지점 결정
- Waypoint Control: 속도, heading 및 glide slope 제어. 경로점 정보 (위치, 속도, 가속도, 시간)로 부터 속도명령 생성
- Tracking control outer loop: 비행경로 추종을 위한 autopilot (AFCS)
- Tracking control inner loop: 비행경로 추종을 위한 조종응답 (command response types) 특성=ACAH, RCDH, heave RCHH)

[Ref 2] Takahashi, Marc D., et al. "Autonomous Rotorcraft Flight Control with Multilevel Pilot Interaction in Hover and Forward Flight."

KU REMARKER Initial Motivation for Autonomous FCS Research

Autonomous FCS Structure of RASCAL JUH-60A Black Hawk (US Army)

[Ref 2] Takahashi, Marc D., et al. "Autonomous Rotorcraft Flight Control with Multilevel Pilot Interaction in Hover and Forward Flight."

KU Research

Autonomous FCS Structure of RASCAL JUH-60A Black Hawk (US Army)

OFN (Obstacle Field Navigation)

Aircraft Parameters

maximum allowed speed	(18 m/s)
maximum climb rate	(2.5 m/s)
maximum descent rate	(2.0 m/s)
maximum normal accelerat	tion (2.0 m/s ²)
maximum forward accelera	tion (0.75 m/s ²)
maximum backward accele	ration (0.75 m/s ²)
maximum turn rate	(0.262 r/sec)
width of spline corridor 4	(10 m)
horizontal obstacle clearan	ce limit (40 m)
vertical obstacle clearance	limit (30 m)

Path Plan Parameters

maximum time between replans	(30 sec)
time between obstacle checks	(0.5 sec)
time to update trajectories(constant, 5.0 sec	:)
time to update trajectories(linear, 0.5 sec)

Ref 2: Autonomous Rotorcraft Flight Control with Multilevel Pilot Interaction in Hover and Forward Flight Ref 3. Autonomous Black Hawk in Flight: Obstacle Field Navigation and Landing-site Selection on the RASCAL JUH-60A

Autonomous FCS Structure of RASCAL JUH-60A Black Hawk (US Army)

Autonomous Flight Modes

Autonomous FCS Structure

Ref 2: Autonomous Rotorcraft Flight Control with Multilevel Pilot Interaction in Hover and Forward Flight

Ref 3. Autonomous Black Hawk in Flight: Obstacle Field Navigation and Landing-site Selection on the RASCAL JUH-60A

Ref 4: Development and Flight Testing of a Flight Control Law for Autonomous Operations Research on the RASCAL JUH-60A

KU RUNKUKUKU INI Initial Motivation for Autonomous FCS Research

Mission Scenario Analysis for Functional Requirements : UCAV Mission

Digital Terrain / Path Planning (Waypoint Guidance Mode)

Trajectory Generator

- Shortest/Safe Path (Waypoint-based)
- Terrains / Threats /NFZ

Waypoint Guidance (Path Tracking Laws)

Maneuver-Trajectory Generator

- Air-to-Ground mission
- Air-to-Air mission

Maneuver-Trajectory Tracking Guidance

KU REMARKER Initial Motivation for Autonomous FCS Research

Mission Scenario Analysis for Functional Requirements : Air-to-Ground

KU #BALE Initial Motivation for Autonomous FCS Research

Mission Scenario Analysis for Functional Requirements : Air-to-Air

KU REMARK IN Initial Motivation for Autonomous FCS Research

Mission Scenario Analysis for Functional Requirements : Air-to-Air

Defensive (Evasive) Maneuvers

High yo-yo

half Cuban eight

Mission Scenario Analysis for Functional Requirements : Air-to-Ground

Mission Phases	Threats / Obstacles	Terrain Masking	Trajectory	Path Constraints	Aircraft Modes
(1) Take off / Acceleration			Base	TO procedure	RW→FW
(2) Climb			Waypoint	V, RoC	FW
(3) Approach to target zone	Radar / SAM / Terrain / NFZ		Waypoint	V, RoC	FW
(4) Enter into threat aera	Radar / SAM / Terrain / NFZ	*	Waypoint	V, nz, RoC	FW
(5) target priority selection	Radar / SAM / Terrain / NFZ	*	Waypoint	V, nz, RoC	FW
(6) Ingress to target zone	Radar / SAM / Terrain / NFZ	*	Waypoint	V, nz, RoC	FW
(7) Maneuvers for target intercept (multi-target intercept)	Radar / SAM / Terrain / NFZ	*	Aggressive MTEs	Corridor for Best intercept V, nz, RoC	FW
(8) Egress from target zone	Radar / SAM / Terrain / NFZ	*	Waypoint	V, nz, RoC	FW
(9) Escape from threat aera	Radar / SAM / Terrain / NFZ	*	Waypoint	V, nz, RoC	FW
(10) Repeat (3)~(9) as required	Radar / SAM / Terrain / NFZ		Waypoint	V, nz, RoC	FW
Return to base			Waypoint	V, RoC	FW
Deceleration / Landing approach			Waypoint	V, RoD LD procedure	FW→RW
Landing			Base	LD procedure	RW

RW = Rotary Wing Mode FW = Fixed Wing Mode

KU REALE RESEarch

High-Level Structure and Function Requirements of Autonomous FCS

Research Environments for Autonomous AFCS : What KKU Has

Integrated Development Environment for Advanced Flight Control System

Research Environments for Autonomous AFCS : What KKU Has

Integrated Optimal Design of Model-Following Flight Control Laws

KU RUNKUKUW Initial Motivation for Autonomous FCS Research

Research Environments for Autonomous AFCS : What KKU Has

Integrated Simulink Template for Design and Evaluation of Flight Control Law

KU REMARK REVENUE Initial Motivation for Autonomous FCS Research

KKU Selection of Major Research Areas for Autonomous FCS

Vehicle Autonomy

KU #WARKUR Initial Motivation for Autonomous FCS Research

Initial Flight-Control-System Structure for Autonomous FCS

KU REALE ACTIVITIES at Initial Stage of Autonomous FCS Research

Overall History of KKU Research Activities for Autonomous FCS

KU REALE PROVIDE ACTIVITIES AT Initial Stage of Autonomous FCS Research

Digital Terrain Model using Radial Basis Functions

Generation of Digital Terrain with Randomly Distributed RBF

Radial Basis Function

Compactly Supported RBF

Curve Fitting Using RBF

Curve Fitting Examples

$$f(\mathbf{r}) = \sum_{j=1}^{j=m} w_j \phi\left(\left\|\mathbf{r} - \mathbf{r}_j\right\|\right)$$

 $\phi = \phi(r) \leftarrow r = \|\mathbf{r} - \mathbf{r}_0\|, \quad \mathbf{r} \in \mathbb{R}^n, \mathbf{r}_0 \in \mathbb{R}^n$

KU RENE Activities at Initial Stage of Autonomous FCS Research

Digital Terrain Model using Radial Basis Functions

3-D Digital Terrain Model with No-Fly-Zone

2D-Plain map at given height

No-Fly-Zone Insertion on 3D Terrain map

No-Fly-Zone Insertion on 2D-Plain at h=0.65*Hmax

Development of Path Planning Algorithm

Definition of Path Planning: Find the path between the initial and final ponits without collision with terrain and obstacles with due consideration for path cost.

Factors Affecting to Path Planning Algorithm: Environment and Planning Range

- **Static Environment** : Time invariant. Used mainly for pre-flight path planning problems
- Dynamic Environment : Used mainly for real-time path planning with time-varying moving obstacles
- Global Planning
 Path planning with the complete knowledge about entire environments
 Used mainly for pre-flight optimal path planning problems
- Local Planning : Path planning without the complete knowledge about entire environments Used mainly for obstacle detection and real-time path replanning

Ref : A. Koubaa et al., "Introduction to mobile robot path planning," Stud. Comput. Intell., vol. 772, no. April, pp. 3–12, 2018.

KU EMACKEVEN Activities at Initial Stage of Autonomous FCS Research

Development of Path Planning Algorithm

Available 3-D Path Planning Algorithms

Algorithms	Time complexity	Applicable environment	Real time applicability
Sampling based algorithms	$0(nlogn) \le T \le 0(n^2)$	Static and Dynamic(Part)	On-line
Node based algorithms	$0(nlogn) \le T \le 0(n^2)$	Static and Dynamic(Part)	On-line
Mathematic model-based algorithms	Depending on the polynomial equation	Static and Dynamic	Off-line
Bioinspired algorithms	$0(n^2) \leq \mathbf{T}$	Static and Dynamic(Part)	Off-line
Multifusion based algorithms	$O(nlogn) \le T$	Depending on the algorithms	On-line

Sampling based algorithms best suit for real-time applications with less limitations

Ref : L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, "Survey of Robot 3D Path Planning Algorithms," Journal of Control Science and Engineering.

Development of Path Planning Algorithm

3-D Path Planning using RRT (Rapidly-exploring Random Tree) Algorithms

- Seoul (37°25'20.2" N, 127°01'21.9" E.)

Development of Path Planning Algorithm

3-D Path Planning using RRT (Rapidly-exploring Random Tree) Algorithms

RRT

- New Node connected with the Nearest Node ٠
- Path is not changed after the initial path generated ٠

New Node connected with the Best Node

Tree connection changed as Node added.

KU RENE Activities at Initial Stage of Autonomous FCS Research

Development of Path Planning Algorithm

3-D Path Planning using RRT (Rapidly-exploring Random Tree) Algorithms

KU REALEVENT Activities at Initial Stage of Autonomous FCS Research

Development of LOS (Line-Of-Sight) Path Optimization Algorithm

- 2. Way-point Insertion for Smooth Interpolation
- 3. Detect the best LOS node without collision
- 4. Define new path

5~6. Repeat up to the goal point to get the optimized path

Activities at Initial Stage of Autonomous FCS Research KU 建國大學校 KONKUK UNIV.

Development of LOS (Line-Of-Sight) Path Optimization Algorithm

RRT* algorithm

Path Optimized when new node added

init 🔺 goal ---- Tree

KU ENACTIVITIES at Initial Stage of Autonomous FCS Research

Flyable Trajectory Generation using Spline Curves

Conditions for Flyable Trajectory and Its Generator

- A flyable trajectory must pass all prescribed way points
- A flyable trajectory must meet the continuity conditions for position, velocity, acceleration, and even jerk vectors at each waypoint.
- A flyable trajectory generator must provide the useful information to check the aircraft fly-ability along the generated trajectory.

Spline Trajectory Generator

• Waypoint data
$$\begin{cases} t_k, \mathbf{p}_k^w = \left(x_k^w, y_k^w, h_k^w, \psi_k^w\right) \right\}_{k=0}^{k=K} \\ \text{e Spline trajectory} \end{cases} \qquad \mathbf{p}_k(\tau) = \mathbf{a}_{0k} + \mathbf{a}_{1k}\tau + \mathbf{a}_{2k}\tau^2 + \mathbf{a}_{3k}\tau^3 + \mathbf{a}_{4k}\tau^4 + \mathbf{a}_{5k}\tau^5 + \mathbf{a}_{6k}\tau^6 + \mathbf{a}_{7k}\tau^7 = \sum_{j=0}^{j=7} \mathbf{a}_{jk}\tau^j \\ \tau = \frac{t - t_k}{\Delta t_k} \in [0, 1] \\ t \in [t_k, t_{k+1}] \\ \Delta t_k = t_{k+1} - \Delta t_k \\ \frac{d}{dt} = \frac{d\tau}{dt}\frac{d}{d\tau} = \frac{1}{\Delta t_k}\frac{d}{d\tau} \end{cases} \qquad \mathbf{waypoint \#0} \qquad \mathbf{p}_1 \qquad \mathbf{p}_2 \\ \mathbf{p}_1 \qquad \mathbf{p}_3 \qquad \mathbf{p}_3 \qquad \mathbf{p}_4 \end{cases}$$

KU ENRYFEREN Activities at Initial Stage of Autonomous FCS Research

Flyable Trajectory Generation using Spline Curves

Spline Trajectory Generator

• Time Integration Formula

$$\mathbf{q}(t) = \mathbf{q}_k + \int_{t_k}^t \mathbf{p}_k \left\{ \tau(t) \right\} dt = \mathbf{q}_k + \Delta t_k \int_0^\tau \mathbf{p}_k(\tau) d\tau = \mathbf{q}_k + \Delta t_k \sum_{j=0}^{j=7} \frac{\mathbf{a}_{jk}}{j+1} \tau^{j+1} \qquad \qquad \dot{\mathbf{q}}(t) = \mathbf{p}_k \left\{ \tau(t) \right\} \\ \mathbf{q}(t_k) = \mathbf{q}_k$$

• Time Derivative Formula

$$\dot{\mathbf{p}}_{k} = \frac{d\mathbf{p}_{k}(\tau)}{dt} = \frac{1}{\Delta t_{k}}\mathbf{p}_{k}'(\tau) = \frac{1}{\Delta t_{k}}\sum_{j=0}^{j=7} j\mathbf{a}_{jk}\tau^{j-1} = \frac{1}{\Delta t_{k}}\left(\mathbf{a}_{1k} + \mathbf{a}_{2k}\tau + \mathbf{a}_{3k}\tau^{2} + \cdots\right) = \begin{pmatrix}\dot{\mathbf{r}}\\\dot{\psi}\end{pmatrix}^{T}$$

Information for Fly-ability Check

- speed $v(t) = \|\dot{\mathbf{r}}(t)\| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{h}^2}$
- Load factor

⊖ Turn radius

$$n(t) = \frac{1}{g} \left(\frac{v^2}{\rho} \right)$$
$$\rho = \frac{\left\{ (\dot{x})^2 + (\dot{y})^2 \right\}^{1.5}}{\left| \dot{x}\ddot{y} - \ddot{x}\dot{y} \right|}$$

Rate of climb

 $\gamma_C = \tan^{-1} \left(\dot{h} / \sqrt{\dot{x}^2 + \dot{y}^2} \right)$

 $v_c = h$

• Flight path angle

KU RENE Activities at Initial Stage of Autonomous FCS Research

Flyable Trajectory Generation using Dubins Path

Conceptual Use of Dubins Path

Interception of Clustered Targets

KU RONKEK Activities at Initial Stage of Autonomous FCS Research

Flyable Trajectory Generation using Dubins Path

Kinematical Relations of Dubins Path for Applications in 3-D Space

106

Flyable Trajectory Generation using Dubins Path

Applications to Optimal Trajectory Generation for Multi-Target-Intercept Mission

P _{verifv}	: The point at which the target is identified, and
	the aim is stared
D _{verify}	: Distance between Target and P _{verify}
P aiming	: The point at which aiming process is completed
	and launching the missile
D _{aiming}	: Distance between Target and Paiming
$\psi_{ ext{target} \# n}$: n-th target heading angle

1. Dubins Path with Prescribed Intercept-Heading Angles & Target Sequence

2. Optimized Heading Angles

3. Optimized Target Intercept Sequence & Heading Angles

KU RENE Activities at Initial Stage of Autonomous FCS Research

Flyable Trajectory Generation using Dubins Path

Applications to Optimal Trajectory Generation for Multi-Target-Intercept Mission

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Ahead-Time based Carrot-Chasing Algorithm

Two different trajectory are used.

- 1. Reference Trajectory
- 2. Guided Trajectory

Strain Straight St

 \bigcirc : VTP on Reference Trajectory at time t + Δt

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Generation of Guided Trajectory using Hermit Spline Curve

Available VTP States

 $\mathbf{p}_{R}(t_{c})$: Desired Position $\dot{\mathbf{p}}_{R}(t_{c})$: Velocity $\ddot{\mathbf{p}}_{R}(t_{c})$: Acceleration $\ddot{\mathbf{p}}_{R}(t_{c})$: Jerk

Using the 1st, 2nd derivatives for initial (aircraft) and final (carrot) states,

$$\left\{t_{0}, f_{0}, \dot{f}_{0}, \ddot{f}_{0}\right\}, \left\{t_{f}, f_{f}, \dot{f}_{f}, \ddot{f}_{f}\right\}$$

$$f(\tau) = \sum_{m=0}^{m=5} a_m \tau^m = a_0 + a_1 \tau + a_2 \tau^2 + a_3 \tau^3 + a_4 \tau^4 + a_5 \tau^5$$

$$\begin{split} f(t) &= \alpha_0 f_0 + \alpha_1 \dot{f}_0 \Delta t + \alpha_2 \ddot{f}_0 \left(\Delta t\right)^2 + \beta_0 f_0 + \beta_1 \dot{f}_0 \Delta t + \beta_2 \ddot{f}_0 \left(\Delta t\right)^2 \\ &= \left(1 - 10\tau^3 + 15\tau^4 - 6\tau^5\right) f_0 + \left(10\tau^3 - 15\tau^4 + 6\tau^5\right) f_1 \\ &+ \left(\tau - 6\tau^3 + 8\tau^4 - 3\tau^5\right) \dot{f}_0 \Delta t + \left(-4\tau^3 + 7\tau^4 - 3\tau^5\right) \dot{f}_1 \Delta t + \frac{1}{2} \left(\tau^2 - 3\tau^3 + 3\tau^4 - \tau^5\right) \ddot{f}_0 \left(\Delta t\right)^2 + \frac{1}{2} \left(\tau^3 - 2\tau^4 + \tau^5\right) \ddot{f}_1 \left(\Delta t\right)^2 \end{split}$$

KU RENE Activities at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Comparison of Acceleration Command for MFC (Model-Following-Control)

Ahead-Time based CCGL (PID + Feedforward Control)

 $\ddot{\mathbf{p}}_{cmd}(t) = k_{p} \left(\mathbf{p}_{d} - \mathbf{p} \right) + k_{d} \left(\dot{\mathbf{p}}_{d} - \dot{\mathbf{p}} \right) + k_{i} \left[\left(\mathbf{p}_{d} - \mathbf{p} \right) dt + k_{ff} \ddot{\mathbf{p}}_{d} \right]$

Traditional (Ahead-distance based) CCGL

 $a_{cmd}^{lat} = k_{\psi} \Delta \psi + k_d d$ $a_{cmd}^{vert} = k_{\theta} (\theta_{cmd} - \theta_a) + k_h (h_t - h_a)$

Various Options for Ahead-Time based CCGL: 8 different Guidance Laws

For Detailed Comparative Study on 8 Guidance Laws, you can refer to [Ref 1]

[[]Ref 1] Seong Han Lee, Sung Wook Hur, Yi Young Kwak, Yong Hyeon Nam, and Chang-Joo Kim, "Ahead-time Approach to Carrot-chasing Guidance Law for an Accurate Trajectory-tracking Control, "International Journal of Control, Automation and Systems 19(8) (2021) 2634-2651

KU EXAMPLE Activities at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Model-Following-Control Structure for CCGL Implementation

- Outer Loop : Carrot-Chasing Guidance Law (GL1, GL3)
- Inner Loop : Model Following Controller (MFC)

Command Filter

$$\begin{split} \phi_{cmd} &= \kappa_{v} \Delta v + \kappa_{vI} \int \Delta v dt & \Delta v = v_{cmd} - v \\ \theta_{cmd} &= -\kappa_{u} \Delta u - \kappa_{uI} \int \Delta u dt & \text{where} \\ r_{cmd} &= \kappa_{\psi} \Delta \psi + \kappa_{\psi} \Delta \dot{\psi} + \kappa_{\psi I} \int \Delta \psi dt & \Delta \psi = \psi_{cmd} - \psi \\ \dot{h}_{cmd} &= \dot{h}_{trim} + \kappa_{\dot{h}} \Delta \dot{h} + \kappa_{h} \Delta h + \kappa_{hI} \int \Delta h dt & \\ \ddot{\phi}_{D} &+ 2\zeta_{\varphi} \omega_{\varphi} \dot{\phi}_{D} + \omega_{\varphi}^{2} \phi_{D} = \omega_{\varphi}^{2} \phi_{cmd} & \tau_{r} \dot{r}_{D} + r_{D} = r_{cmd} \\ \ddot{\theta}_{D} &+ 2\zeta_{\varphi} \omega_{\varphi} \dot{\theta}_{D} + \omega_{\varphi}^{2} \theta_{D} = \omega_{\varphi}^{2} \theta_{cmd} & \tau_{\dot{h}} \ddot{h}_{D} + \dot{h}_{D} = \dot{h}_{cmd} \end{split}$$

Inversion Model

$$\mathbf{u}_{ff} = \mathbf{B}_2^{-1} (\dot{\mathbf{x}}_{2D} - \mathbf{A}_{21} \mathbf{x}_1 - \mathbf{A}_{22} \mathbf{x}_2)$$

Error Dynamics

$$\mathbf{u}_{fb} = \begin{pmatrix} -k_{dh}\Delta\dot{h} - k_{ph}\Delta h - k_{ih}\int\Delta hdt \\ k_{d\phi}\Delta\dot{\phi} + k_{p\phi}\Delta\phi + k_{p\nu}\Delta\nu + k_{i\nu}\int\Delta\nu dt \\ k_{d\theta}\Delta\dot{\theta} + k_{p\theta}\Delta\theta - k_{pu}\Delta u - k_{iu}\int\Delta udt \\ k_{d\psi}\Delta\dot{\psi} + k_{p\psi}\Delta\psi + k_{i\psi}\int\Delta\psi dt \end{pmatrix} \text{ where } \begin{array}{l} \Delta\phi = \phi_D - \phi \\ \Delta\theta = \theta_D - \theta \end{array}$$

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Optimization of Controller Gains and Parameters

MATLAB ® SIMULINK

EnvTmG1:Generic Step Response

5

Time [sec]

Specification	Description	Source	Channel	Constraint Type
EigLcG1	Eigenvalues (Stability)	AMES Research Center	All	Hard
EnvTmG1	Step Response	General	X,Y,Z,ψ	Soft

Parameters	Location	Hover	30 knots	60 knots	90knots	120 knots
ĸ	Filter (Heave)	1.263E+00	2.533E+00	1.644E+00	7.931E-01	2.383E+00
κ_h	Filter (Heave)	5.988E-01	8.037E-01	6.296E-01	1.889E-01	4.488E-01
κ_{hI}	Filter (Heave)	9.968E-04	9.327E-04	1.032E-03	2.032E-03	8.490E-04
κ_{ψ}	Filter (Yaw)	9.184E-01	5.670E-01	2.542E-01	1.079E-01	5.276E-01
κ _ψ	Filter (Yaw)	5.170E-01	7.714E-01	1.017E-01	4.015E-02	5.328E-01
κ _{ψI}	Filter (Yaw)	8.585E-04	1.116E-03	9.864E-04	7.864E-04	8.490E-04
ĸ	Filter (Pitch)	1.316E-02	1.146E-02	5.158E-02	9.397E-02	1.344E-02
K	Filter (Pitch)	1.167E-03	9.792E-04	9.505E-04	9.505E-04	8.490E-04
K _v	Filter (Roll)	9.036E-03	1.014E-02	6.562E-02	6.220E-02	1.529E-02
$\kappa_{\gamma I}$	Filter (Roll)	8.976E-04	1.080E-03	1.056E-03	1.056E-03	8.490E-04
ω_{ϕ}	Filter (Roll)	3.533E+00	4.504E+00	7.121E+00	8.122E+00	5.813E+00
ω_{θ}	Filter (Pitch)	5.456E+00	3.704E+00	9.064E+00	7.044E+00	5.874E+00
τ_r	Filter (Yaw)	1.510E+00	1.774E+00	1.179E+00	9.628E-01	1.696E+00
τ _h	Filter (Heave)	1.643E+00	1.697E+00	1.770E+00	1.453E+00	3.549E+00
Sø	Filter (Roll)	9.000E-01	9.000E-01	9.000E-01	9.000E-01	9.000E-01
50	Filter (Pitch)	9.000E-01	9.000E-01	9.000E-01	9.000E-01	9.000E-01
k _{dø}	Feedback (Roll)	2.907E-01	2.505E-01	3.433E-01	3.778E-01	2.935E-01
$k_{p\phi}$	Feedback (Roll)	3.494E-01	3.842E-01	5.905E-01	5.282E-01	3.420E-01
k_{pv}	Feedback (Roll)	3.164E-02	2.384E-02	9.807E-05	3.729E-02	9.749E-03
k_{i}	Feedback (Roll)	9.590E-05	1.173E-04	9.795E-05	4.130E-04	2.734E-03
k _{ae}	Feedback (Pitch)	2.192E-01	2.223E-01	1.920E-01	1.969E-01	5.648E-01
k _{p0}	Feedback (Pitch)	4.833E-01	6.027E-01	6.858E-01	7.262E-01	5.073E-01
k_{pu}	Feedback (Pitch)	6.808E-02	6.893E-02	1.268E-02	6.246E-03	1.674E-02
k _{in}	Feedback (Pitch)	1.100E-04	1.099E-04	9.950E-05	4.369E-03	1.658E-03
k _{ay}	Feedback (Yaw)	7.530E-01	6.540E-01	9.275E-01	1.142E+00	8.872E-01
k _{pv}	Feedback (Yaw)	1.869E-01	5.087E-01	7.197E-01	6.121E-01	4.516E-01
k _{iy}	Feedback (Yaw)	1.104E-04	1.010E-04	1.048E-04	1.007E-04	1.694E-03
k_{ph}	Feedback (Heave)	4.478E-04	8.351E-05	7.528E-02	4.478E-02	2.775E-01
k_{ih}	Feedback (Heave)	0.000E+00	0.000E+00	0.000E+00	1.181E-03	4.441E-03
k _{an}	Feedback (Heave)	6.003E-01	9.743E-01	8.052E-01	1.023E+00	8.172E-01

10

KU RENE Activities at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Acceleration and Deceleration Maneuvers

Acceleration Maneuver

Deceleration Maneuver

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Piroutte, Transient Turn, and Helical Turn Maneuvers

Complete the circle within 60sec Tracking error within 15ft

KU REALEVENT Activities at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Piroutte Maneuver (MFC structure, GL1/GL3)

Position and Heading angle(Left:GL1, Right:GL3)

KU REALEVENT Activities at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Transient Turn Maneuver (MFC structure, GL1/GL3)

Position and Heading angle(Left:GL1, Right:GL3)

KU RENE Activities at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Piroutte, Transient Turn, and Helical Turn Maneuvers

Pirouette

GL1 = GL5

GL3 = GL6

GL1 : Yellow

GL3 : Blue

GL6 : Red

Helical Turn

118

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Composite Maneuver (MFC structure, GL1/GL3)

No.	Maneuvers	Duration	State changes during maneuver
1	Hover	15sec	Hover station-keeping at 15ft
2	Acceleration	30sec	Level acceleration from 0 knots to 60knots
3	Pop-up	10sec	Climb from 15 ft up to 215ft and recover the level f light condition
4	Helical Turn	60sec	After 720 deg heading and 200 ft altitude changes, return to level flight
5	Pop-down	10sec	Descent from 415 ft to 215ft and recover the level flight condition
6	Deceleration	30sec	Level deceleration from 60 knots to hover

KU REALE ACTIVITIES at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Composite Maneuver (MFC structure, GL1/GL3)

Effect of ahead time on trajectory-tracking accuracy (Upper:GL1, Lower:GL3)

KU ENACTIVITIES at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Composite Maneuver (MFC structure, GL1/GL3)

KU RENE Activities at Initial Stage of Autonomous FCS Research

Development of Ahead-Time Based Carrot Chasing Guidance Law (CCGL)

Applications of CCGL to Composite Maneuver (MFC structure, GL1/GL3)

Aircraft states computed with $\Delta t = 9.0$ (sec)

KU EXAMPLE INVIENT Recent Progress in Autonomous FCS Research

Recent Publications

Development of Lyapunov-based Nonlinear Trajectory-Tracking Controller (Back-Stepping / Sliding-Mode Control Design)

- Chang-Joo Kim, et al., "Adaptive Trajectory Tracking Control for Rotorcraft Using Incremental Backstepping Sliding Mode Control Strategy," International Journal of Aerospace Engineering 2021:1-15, July 2021.
- Chang-Joo Kim, et al., "Efficient Gain Parameter Selection Approach for Sliding Mode Control with Application to Rotorcraft Trajectory Tracking Control Design," The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2, September 2022
- Chang-Joo Kim, et al., "Robust Trajectory-Tracking Control of a Rotorcraft Using Immersion-and-Invariance-Based Adaptive Backstepping Control, " International Journal of Aerospace Engineering 2022(3):1-16, July 2022.

Development of Nonlinear Trajectory-Tracking Controller using Incremental Dynamics (Incremental Back-Stepping / Sliding-Mode Control Design)

- Chang-Joo Kim, et al., "Guidance and control for autonomous emergency landing of the rotorcraft using the incremental backstepping controller in 3-dimensional terrain environments, "Aerospace Science and Technology 132:108051, 2022.
- Chang-Joo Kim, et al., "Robust Prediction of Angular Acceleration for Practical Realization of Incremental Nonlinear Trajectory-tracking Control for Aircrafts, "International Journal of Control Automation and Systems 20(4):1250-1265, April 2022.
- Chang-Joo Kim, et al., "A Trajectory-Tracking Controller Design of Rotorcraft Using an Adaptive Incremental-Backstepping Approach, "Aerospace 8(9):248, September 2021.

KU EXAMPLE INVIENT Recent Progress in Autonomous FCS Research

Recent Publications

Integration of Path-Planning, Flyable Trajectory Generation, and Trajectory-Tracking Control for Mission Autonomy

- Chang-Joo Kim, et al., "A Study on Path Planning Using Bi-Directional PQ-RRT* Algorithm and Trajectory Tracking Technique Using Incremental Backstepping Control, "The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2, September 2022
- Chang-Joo Kim, et al., "A Study on Integration of Guidance System Using Real-Time PQ-RRT* Algorithm and a Trajectory Tracking Controller, "Journal of Institute of Control Robotics and Systems 28(1):75-85, January 2022.
- Chang-Joo Kim, et al., "An Approach to Air-to-Surface Mission Planner on 3D Environments for an Unmanned Combat Aerial Vehicle," Drones 6(1):20, January 2022
- Chang-Joo Kim, et al., "Integration of path planning, trajectory generation and trajectory tracking control for aircraft mission autonomy," Aerospace Science and Technology 118(1):107014, August 2021

The Presentation will mainly focus on Incremental Back-Stepping Control (IBSC) design for brevity.

KU REMARKA Development of IBS Trajectory-Tracking Control

Some of Claims based on Experiences

• Mission Autonomy can be effectively achieved using Trajectory-Tracking Control.

Trajectory-following control : control in 3-D space (time independent)

Trajectory-tracking control : control in 4-D space (exact timing is critical)

• Flight Dynamic Model represented in the Inertial Frame is more convenient then the traditional form of Euler Equations, since desirable trajectories for Mission Autonomy are typically prescribed by the position and heading angle. $\mathbf{p}_d = (x, y, z, \psi, t)^T$

Euler Equations

$$\dot{\mathbf{v}} = \mathbf{f} / m - \mathbf{\omega} \times \mathbf{v}$$

$$\dot{\mathbf{\omega}} = \mathbf{J}^{-1} \left\{ \mathbf{m} - \mathbf{\omega} \times (\mathbf{J} \mathbf{\omega}) \right\} \quad \mathbf{v} = \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \quad \mathbf{\omega} = \begin{pmatrix} p \\ q \\ r \end{pmatrix}, \quad \mathbf{\phi} = \begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Motion Equations using inertial states

$$\ddot{\mathbf{r}} = \mathbf{C}^{-1} \left\{ \mathbf{f} / m - (\mathbf{T}\dot{\boldsymbol{\phi}}) \times (\mathbf{C}\dot{\mathbf{r}}) - \dot{\mathbf{C}}\dot{\mathbf{r}} \right\}$$

$$\ddot{\boldsymbol{\phi}} = \mathbf{T}^{-1} \left[\mathbf{J}^{-1} \left\{ \mathbf{m} - (\mathbf{T}\dot{\boldsymbol{\phi}}) \times (\mathbf{J}\mathbf{T}\dot{\boldsymbol{\phi}}) \right\} - \dot{\mathbf{T}}\dot{\boldsymbol{\phi}} \right]$$

$$\mathbf{Using} \qquad \boldsymbol{\omega} = \mathbf{T}\dot{\boldsymbol{\phi}} \qquad \dot{\boldsymbol{\omega}} = \dot{\mathbf{T}}\dot{\boldsymbol{\phi}} + \mathbf{T}\ddot{\boldsymbol{\phi}}$$

$$\mathbf{v} = \mathbf{C}\dot{\mathbf{r}} \qquad \dot{\mathbf{v}} = \dot{\mathbf{C}}\dot{\mathbf{r}} + \mathbf{C}\ddot{\mathbf{r}}$$

 $\mathbf{p} = (x, y, z)^T$

 $\mathbf{p} = (x, y, z, t)^T$

KU 建國大學校 Development of IBS Trajectory-Tracking Control

Some of Claims based on Experiences

Incremental Flight Dynamics are much more effective for real applications than Full

Nonlinear Dynamics.

- It allows controller scheduling only with the control effectiveness matrix
- The mismatched uncertainty can be removed
- Adaptive control elements can be straightforwardly adopted

Nonlinear Dynamics

Nonlinear Dynamics at to

$$\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}) + \mathbf{G}(\mathbf{x}, \dot{\mathbf{x}})\mathbf{u} + \mathbf{d}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u})$$

Nonlinear Dynamics at to+ \triangle **t**

$$\ddot{\mathbf{x}} \approx \left(\mathbf{f}_{0} + \mathbf{G}_{0}\mathbf{u}_{0} + \mathbf{d}_{0}\right) + \mathbf{G}_{0}\Delta\mathbf{u} + \frac{\partial\mathbf{d}}{\partial\mathbf{u}}\Delta\mathbf{u}$$
$$+ \left(\frac{\partial\mathbf{f}_{0}}{\partial\mathbf{x}}\Delta\mathbf{x} + \frac{\partial\mathbf{f}_{0}}{\partial\mathbf{x}}\Delta\dot{\mathbf{x}} + \frac{\partial\mathbf{d}}{\partial\mathbf{x}}\Delta\mathbf{x} + \frac{\partial\mathbf{d}}{\partial\dot{\mathbf{x}}}\Delta\dot{\mathbf{x}}\right)$$
$$\approx \ddot{\mathbf{x}}_{0} + \left(\mathbf{G}_{0} + \frac{\partial\mathbf{d}}{\partial\mathbf{u}}\right)\Delta\mathbf{u}$$

Incremental Dynamics at to+ \triangle t

 $\ddot{\mathbf{x}}_{0} = \mathbf{f}(\mathbf{x}_{0}, \dot{\mathbf{x}}_{0}) + \mathbf{G}(\mathbf{x}_{0}, \dot{\mathbf{x}}_{0})\mathbf{u}_{0} + \mathbf{d}_{0}(\mathbf{x}_{0}, \dot{\mathbf{x}}_{0}, \mathbf{u})$

$$\mathbf{\ddot{x}} \approx \mathbf{\ddot{x}}_{0} + \left(\mathbf{G}_{0} + \frac{\partial \mathbf{d}}{\partial \mathbf{u}}\right) \Delta \mathbf{u}$$

Measured or Estimated linear and angular acceleration data are used (You can refer to [Ref 1])

[Ref 1] Chang-Joo Kim, et al., "Robust Prediction of Angular Acceleration for Practical Realization of Incremental Nonlinear Trajectory-tracking Control for Aircrafts, "International Journal of Control Automation and Systems 20(4):1250-1265, April 2022.

KU RENEALE IN Development of IBS Trajectory-Tracking Control

Some of Claims based on Experiences

- Lyapunov-Based Control Design coupled with Incremental Dynamics is easily Certifiable by using Deterministic control effective matrices. G_0 $\ddot{\mathbf{x}} \approx \ddot{\mathbf{x}}_0 + \left(\mathbf{G}_0 + \frac{\partial \mathbf{d}}{\partial \mathbf{u}}\right) \Delta \mathbf{u}$
- Slack Variables Approach to System Dynamics is extremely effective to get the nonsingular square control effective matrices required for the model inversion.

$$\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, \mathbf{u}_p) + \mathbf{G}(\mathbf{x}, \dot{\mathbf{x}})\mathbf{u} + \boldsymbol{\xi} + \mathbf{d}$$

$$\mathbf{G} = \begin{pmatrix} \overline{\mathbf{G}} & \mathbf{G}_s \end{pmatrix}, \quad \boldsymbol{\xi} = -\mathbf{G}_s \mathbf{u}_s$$
Slack variable

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \\ \psi \\ \phi \\ \theta \end{pmatrix} \mathbf{u}_{p} = \begin{pmatrix} \delta_{0} \\ \delta_{1c} \\ \delta_{1s} \\ \delta_{TR} \end{pmatrix} \mathbf{G}_{s} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Thus, the fully actuated system dynamics are easily obtained using slack variables.

SAS-type functions are working well for the trajectory-tracking IBSC

 $egin{aligned} \phi_d &= \phi_{trim}, & \dot{\phi}_d &= \ddot{\phi}_d &= 0 \ heta_d &= heta_{trim}, & \dot{ heta}_d &= \ddot{ heta}_d &= 0 \end{aligned}$

Thus, the prescription of trajectories for pitch and bank angles are not mandatory.

Design of IBS Trajectory-Tracking Controller

Incremental Dynamics

$$\ddot{\mathbf{x}} = \ddot{\mathbf{x}}_0 + \mathbf{G}\Delta\mathbf{u} + \Delta\boldsymbol{\xi}$$

Tracking Error Dynamics

 $\mathbf{z}_{1} = \mathbf{x} - \mathbf{x}_{d}$ $\mathbf{z}_{2} = \dot{\mathbf{x}} - \boldsymbol{\alpha} \quad \text{Virtual Control}$ $\dot{\mathbf{z}}_{1} = \mathbf{z}_{2} + \boldsymbol{\alpha} - \dot{\mathbf{x}}_{d}$ $\dot{\mathbf{z}}_{2} = \ddot{\mathbf{x}}_{0} + \mathbf{G}\Delta\mathbf{u} + \Delta\boldsymbol{\xi} - \dot{\boldsymbol{\alpha}}$

Control Lyapunov Function CLF)

$$V = \frac{1}{2} \mathbf{z}_{1}^{T} \mathbf{Q}^{-1} \mathbf{z}_{1} + \frac{1}{2} \mathbf{z}_{2}^{T} \mathbf{z}_{2}$$
$$+ \frac{1}{2} \Delta \boldsymbol{\xi}^{T} \boldsymbol{\Lambda}_{\boldsymbol{\xi}}^{-1} \Delta \boldsymbol{\xi}$$
$$\begin{pmatrix} \mathbf{Q} = diag(q_{j})_{j=1}^{j=6} > 0\\ \boldsymbol{\Lambda}_{\boldsymbol{\xi}} = diag(\lambda_{\boldsymbol{\xi}j})_{j=1}^{j=6} > 0 \end{pmatrix}$$

Lyapunov Stability Conditions $\dot{V} = \mathbf{z}_1^T \mathbf{Q}^{-1} \dot{\mathbf{z}}_1 + \mathbf{z}_2^T \dot{\mathbf{z}}_2 + \Delta \boldsymbol{\xi}^T \boldsymbol{\Lambda}_{\boldsymbol{\xi}}^{-1} \Delta \dot{\boldsymbol{\xi}}$ $= \mathbf{z}_1^T \mathbf{Q}^{-1} (\boldsymbol{\alpha} - \dot{\mathbf{x}}_d) + \mathbf{z}_2^T (\mathbf{Q}^T \mathbf{z}_1 + \ddot{\mathbf{x}}_0 + \mathbf{G} \Delta \mathbf{u} - \dot{\boldsymbol{\alpha}})$ $+ \Delta \boldsymbol{\xi}^T (\boldsymbol{\Lambda}_{\boldsymbol{\xi}}^{-1} \Delta \dot{\boldsymbol{\xi}} + \mathbf{z}_2) \le 0$

Control Laws and Update Laws

$$-\mathbf{K}_{1}\mathbf{z}_{1} = \mathbf{Q}^{-1}(\boldsymbol{\alpha} - \dot{\mathbf{x}}_{d}) \rightarrow \boldsymbol{\alpha} = -\mathbf{Q}\mathbf{K}_{1}\mathbf{z}_{1} + \dot{\mathbf{x}}_{d}$$
$$-\mathbf{K}_{2}\mathbf{z}_{2} = \mathbf{Q}^{-1}\mathbf{z}_{1} + \ddot{\mathbf{x}}_{0} + \mathbf{G}\Delta\mathbf{u} - \dot{\boldsymbol{\alpha}}$$
$$= \mathbf{Q}^{-1}\mathbf{z}_{1} + \ddot{\mathbf{x}}_{0} + \mathbf{G}\Delta\mathbf{u} + \mathbf{Q}\mathbf{K}_{1}\dot{\mathbf{z}}_{1} - \ddot{\mathbf{x}}_{d}$$

$$\Delta \mathbf{u} = -\mathbf{G}^{-1} \left\{ (\mathbf{K}_2 + \mathbf{Q}\mathbf{K}_1) \dot{\mathbf{z}}_1 + (\mathbf{Q}^{-1} + \mathbf{K}_2 \mathbf{Q}\mathbf{K}_1) \mathbf{z}_1 + \ddot{\mathbf{x}}_0 - \ddot{\mathbf{x}}_d \right\}$$
$$\mathbf{u} = \mathbf{u}_0 + \Delta \mathbf{u}$$

$$\Delta \dot{\boldsymbol{\xi}} = -\boldsymbol{\Lambda}_{\boldsymbol{\xi}} \mathbf{Z}_{2} \boldsymbol{\alpha} = -\mathbf{Q} \mathbf{K}_{1} \mathbf{Z}_{1} + \dot{\mathbf{X}}_{d}$$

$$\begin{pmatrix} \mathbf{K}_{1} = diag(k_{1j})_{j=1}^{j=6} > 0 \\ \mathbf{K}_{2} = diag(k_{2j})_{j=1}^{j=6} > 0 \end{pmatrix}$$

Gain Matrices IBSC

Weight Matrices for CLF

KU REALFUNC Development of IBS Trajectory-Tracking Control

Design of IBS Trajectory-Tracking Controller

Error Dynamics with IBS Trajectory-Tracking Control

$$\ddot{\mathbf{z}}_1 = \ddot{\mathbf{x}}_0 + \mathbf{G}\Delta\mathbf{u} + \Delta\boldsymbol{\xi} - \ddot{\mathbf{x}}_d = -(\mathbf{K}_2 + \mathbf{Q}\mathbf{K}_1)\dot{\mathbf{z}}_1 - (\mathbf{Q}^{-1} + \mathbf{K}_2\mathbf{Q}\mathbf{K}_1)\mathbf{z}_1 + \Delta\boldsymbol{\xi}$$

 $\ddot{\mathbf{z}}_1 + (\mathbf{K}_2 + \mathbf{Q}\mathbf{K}_1)\dot{\mathbf{z}}_1 + (\mathbf{Q}^{-1} + \mathbf{K}_2\mathbf{Q}\mathbf{K}_1)\mathbf{z}_1 = \Delta\xi$

$$\ddot{z}_{1,j} + \left(k_{2,j} + q_j k_{1,j}\right) \dot{z}_{1,j} + \left(k_{2,j} q_j k_{1,j} + \frac{1}{q_j}\right) z_{1,j} = \Delta \xi_j, \quad (j = 1, 2, \dots, 6)$$

Desirable Error Dynamics and Gain Selections by specifying desirable Damping Ratio and Natural Frequency for each axis

$$\begin{aligned} k_{2j} + q_j k_{1j} &= 2\zeta_j \omega_j \\ k_{2j} q_j k_{1j} + \frac{1}{q_j} &= \omega_j^2 \\ \frac{1}{\omega_j^2} &\leq q_j \leq \frac{1}{\left(1 - \zeta_j^2\right) \omega_j^2} \end{aligned} \qquad k_{1j} = \frac{1}{q_j} \left(\zeta_j \omega_j \pm \sqrt{\frac{1}{q_j} - \left(1 - \zeta_j^2\right) \omega_j^2} \right) \\ k_{2j} = \zeta_j \omega_j \mp \sqrt{\frac{1}{q_j} - \left(1 - \zeta_j^2\right) \omega_j^2} \end{aligned} \qquad k_{2j} = \zeta_j \omega_j = \zeta_j \omega_j + \zeta_j (0, 1) \end{aligned}$$

As a result, rigorous design works for Gain Optimization can be removed.

Design of IBS Trajectory-Tracking Controller

Schematics of Back-Stepping Controller with Command Filter

Design of IBS Trajectory-Tracking Controller

Simulation Environment for Flight-Control-Law Validation

KU LEMALK UNIX Development of IBS Trajectory-Tracking Control

Validation of IBS Trajectory-Tracking Controller using Bo-105 Model

Bo-105 Helicopter

Model Reference

: Padfield, Gareth D, Helicopter flight dynamics: the theory and application of flying qualities and simulation modelling, John Wiley & Sons, 2008

Helicopter Mass : 2200kg				
FIXX	1433.0 kg m^2	FIXY	0.0 kg m^2	
FIYY	4973.0 kg m^2	FIYZ	0.0 kg m^2	
FIZZ	4099.0 kg m^2	FIZX	660.0 kg m^2	

Mass Properties

Main Rotor Parameters

Number of Blades	4	Twist	-6.2deg
RPM	424 RPM	Lock number	5.087
Chord	0.27 m	Tilt angle	3.0deg
Radius	4.91 m	Flap hinge offset	0.746 m
lift curve slope	6.113	drag coefficient	0.0074
1st Flap moment of inertia	51.1 kg m	2nd Flap moment of inertia	231.7 kg m^2

Tail Rotor Parameters

Number of Blades	2	mast height	1.72 m
RPM	233rad/sec	station	5.961m
Chord	0.179 m	Radius	0.95m
lift curve slope	4.91 m	drag coefficient	6.113
2nd Flap moment of inertia	1.06 kg m^2	1st Flap moment of inertia	0.64 kg m

Validation of IBS Trajectory-Tracking Controller using Bo-105 Model

Trajectory-Tracking Control for Piroutte-Maneuver Course

Validation of IBS Trajectory-Tracking Controller using Bo-105 Model

Trajectory-Tracking Control for Slalom-Maneuver Course

135

KU REALEVENT Development of IBS Trajectory-Tracking Control

Validation of IBS Trajectory-Tracking Controller using Bo-105 Model

Trajectory-Tracking Control for Transient-Turn-Maneuver Course

136

Combined Maneuver Case

Sequence of Maneuvers

Maneuvers	Length (sec)	Velocity range (kts)	Notes
Initial Condition	0	Hover	Initial Height: 100 ft
Acceleration	0 ~ 20	0 to 60	/
Slalom	20 ~ 45	60	/
Transient Turn	45 ~ 75	60	180 deg turn
Helical Turn	75 ~ 135	60	720 deg turn
Deceleration	135 ~ 150	60 ~ 30	/
Pop up	150 ~ 160	30	100ft ascent
Deceleration	160 ~ 175	30 ~ 0	/
Pirouette	175 ~ 220	0	Radius: 100 ft

Adaptive IBSC with Least-Squares parameter estimation with direction forgetting

Simulation time step : 0.001sec Control update rate : 0.01sec

Combined Maneuver Case: Control inputs and Trajectory States

Combined Maneuver Case: Rigid-body States

Autonomous Landing after One Engine Inoperative (OEI) Condition

Path Planning

- Entry/Exit Phase: using NOCP solution
- Steady Decent Phase: Bi-directional RRT (from Entry final point to Flare initiation point)

Trajectory Generation using Spline Interpolation Trajectory-Tracking using IBSC

Autonomous Landing after One Engine Inoperative (OEI) Condition

Path Planning Conditions		Conditions
	Engine failure location	x = 6200m, y = 2000m, z = 1500 ft
	Flare initial point	x = 9500m, y = 4000m, z = 100 ft
	Entry trajectory	$h_{e,in} = 1500 ft, V_{e,in} = 40 knot, \dot{z}_{e,f} = 2m / s$
	Flare trajectory	$h_{f,in} = 100 ft, V_{e,in} = 40 knot$
	Steady-Descent trajectory	Node Generation(n) = 11

Path Planning for Steady Descent Phase : Bi-directional RRT with steady descent rate

Autonomous Landing after One Engine Inoperative (OEI) Condition

Generated Trajectory using total waypoint data

150

100

-50

-100

0

50

100 150 200

φ (deg)

Position

Attitude

time(sec)

300

143

250

linear velocity

Attitude rate

350

350

Autonomous Landing after One Engine Inoperative (OEI) Condition

Generated Trajectory using total waypoint data

350
Autonomous Landing after One Engine Inoperative (OEI) Condition

KU 建國大學校 Integration of Path-Plan, Trajectory Generation, and Tracking Control

Autonomous Landing after One Engine Inoperative (OEI) Condition

Trajectory-Tracking Control

[Tracking result with Geometric information]

[Control, RPM, and Power]

KU 建國大學校 Integration of Path-Plan, Trajectory Generation, and Tracking Control

Autonomous Terrain-Following Flight Control

Path Planning Strategy

- RRT algorithm under Height clearance limits
- Real-time planning with unknown terrain information
- Re-planning when detailed terrain information becomes available
- Threat (Radar popup) cost considered

Minimum Clearance distance = 100.0m Maximum Clearance distance = 200.0m

 $h_{\max} = Maximum\ clearance$ $h_{\min} = Minimum\ clearance$

Primary Path-Planning using Low/High Resolution Terrain Information

Effect of Map Resolution on Ground Clearance

Simulation with Obstacle-free Terrain

Simulation with Popup Radar

time (sec)

Simulation with Real-time Path-Planning Strategy

On-Going: Autonomous Multiple-RUAS Operations

Complex and Uncertainty in Mission Environment and Scenarios for Multi-Vehicle Operation

On-Going: Autonomous Multiple-RUAS Operations

Framework for Autonomous Multi-Vehicle Operation

On-Going: Autonomous Multiple-RUAS Operations

6000

1000

Actual Path in 3D

Ter

 $d_{ii} < k_{dist} l_{ii}$

Major Mission Planner Functions

Path-Cost Estimation

- > All possible connection path between the targets are planned.
- Unconnectable case will be neglected using geometric approach
- > Only cost values (ex. distance) are used for GA optimization.

No direct connection for:

Start to target 1 & 7, target 1 to 2 Target 1 to 6, Target 6 to 7 & End Point

St	art Poi	nt	1	2	3	4	5	6	7	E	nd Poi	nt	
0	5	10	4444	10295	13457	8493	11570	8148	8000	19149	19131	19095	
5	0	5	####	10284	13457	13-57 Between Target			19122	19104	19116	S.P	
10	5	0	0444	10280	13451	8487	11559	8151	Round	19096	19093	19086	
C.	- D -		0		12,70	18407	19804	####	4349	10054	9961	9972	1
Sta	art Pol	nt	*****	0	3326	4031	6747	8307	11025	9035	8839	8865	2
13457	13457	13451	12270	3326	0	6172	8015	11682	8023	5796	5766	5786	3
8493	8488	8487	18407	4031	6172	0	3261	9794	14104	11934	11928	11927	4
11570	11564	11559	19804	6747	8015	3261	0	12931	15660	13054	13057	13052	5
8148	8148	8151	#####	8367	11682	9794	12931	0	#####	E	nd Poi	nt	6
			4349	11023	8023	14104	15660	#####	0	5618	5611	5617	7
618 0 5 10													
(Cost of connection from point 3 to point 2 511 5 0 5						E.P						
19095	19116	19086	9972	8865	5786	11927	13052	#####	5617	10	5	0	

Estimated Path Cost Between the Targets

Task Assignment/Trajectory Generation

Task allocation for: 1) Minimize the total distance 2) Evenly distributed targets

$$n_{avg} = n_{total} / m_{uav} = 2.5$$

Task Allocation

> GA based algorithms are known for their robustness, fastness and others

Q. Peng, H. Wu, and R. Xue, "Review of Dynamic Task Allocation Methods for UAV Swarms Oriented to Ground Targets," Complex System Modeling and Simulation vol. 1, no. 3, pp. 163–175, 2021, doi: 10.23919/csms.2021.0022.

> Double-Chromosome Encoding Methods are applied for task allocation

Example 1 Task C	Order 3	1	4	2	5	
- RUAV 3 No. U	JAV RU	JAV1	RUAV2	RI	JAV3	
- Chromosome II (2,3)		\Rightarrow	2 3			
Example 2 Task O	rder 3	1	4	2	5	
- Chromosome I (3,1,4,2,5) No. U.	AV	RUAV1				
 Chromosome II (4,4) Note. No tasks are assigned to RUAV. 	2			⇒ /	4	

Cross Over

1	3	5	2	4	6	4	3	5	2	1	6
2	5	4	1	6	3	3	5	4	1	6	2

Mutation

- Flip entire selected part

Integration of Path-Plan, Trajectory Generation, and Tracking Control KU 建國大學校 KONKUK UNIV

On-Going: Autonomous Multiple-RUAS Operations

Plot without Terrain

Recent Research Progresses in Rotorcraft Flight Dynamics and Autonomous Flight Control at KKU

Part 2: Rotorcraft Autonomous Flight Control Systems

Summary

KU 建國大學校 Summary of Part 2: Rotorcraft Autonomous FCS

KKU Researches have been initially motivated by

- Kendou's definition of Autonomy Level and Functional Requirements
- NASA's researches on RASCAL JUH-60A Black Hawk program

Mission Scenario Analysis for Functional Requirements : Air-to-Ground

KKU's Mission Scenario Analysis

			GUIDA	asoning and	
State GPS/J	GATION tuational Awaren Perceptic an enzyping of Estimation	ness on ever rec gillion	high-leve missi execu mid-leve pa fow-leve waypo	e decision-making el decision-making el decision-making el decision-making el decision-making el decision-making int sequencer and	are of GNC capabilities (level of autonomy)
RUAV CO	Sensing AS state vector	Elight Con - 3D position/v - attitude contra ics, communication	trajec trajec	reference trajectories ads on payload, etc.	gradual increa
	other moo visu	dules and function alization te Human-Ro	wireless communication links s lemetry and data bot Interface (H	logging RI)	
JAS	665	4	eer merinee (n		

Rotorcraft Unmanned Aerial Vehicle(RUAV)

<u>A powered rotorcraft</u> that does not require an onboard crew, <u>can operate with some degree of autonomy</u>, and can be expendable or reusable.

Rotorcraft Unmanned Aerial or Aircraft System(RUAS)

<u>A RUAS is a physical system</u> that includes <u>a RUAV</u>, <u>communication architecture</u>, and <u>a ground control station</u> with no human element aboard any component.

Navigation System(NS): Perception & State Estimation

The process of monitoring and controlling the movement of a craft or vehicle from one place to another.

Guidance System(GS)

The "driver" of a RUAS that exercises Mission/Path planning and decision-making functions to achieve assigned missions or goals.

Autonomous Flight Control System(AFCS)

The process of manipulating the inputs to a dynamic system to obtain a desired effect on its outputs without a human in the control loop.

Path Aircraft Terrain **Mission Phases** Threats / Obstacles Trajectory Masking Constraints Modes (1) Take off / Acceleration RW→FW Base **TO procedure** (2) Climb V, RoC FW Waypoint (3) Approach to target zone Radar / SAM / Terrain / NFZ Waypoint V, RoC FW Radar / SAM / Terrain / NFZ FW (4) Enter into threat aera Waypoint V. nz. RoC (5) target priority selection Radar / SAM / Terrain / NFZ Waypoint V, nz, RoC FW * (6) Ingress to target zone Radar / SAM / Terrain / NFZ Waypoint V, nz, RoC FW Corridor for (7) Maneuvers for target intercept Aggressive Best intercept Radar / SAM / Terrain / NFZ FW (multi-target intercept) MTEs V, nz, RoC Radar / SAM / Terrain / NFZ FW (8) Egress from target zone Waypoint V. nz. RoC Radar / SAM / Terrain / NFZ V, nz, RoC FW (9) Escape from threat aera Waypoint (10) Repeat (3)~(9) as required Radar / SAM / Terrain / NFZ Waypoint V, nz, RoC FW V, RoC FW Return to base Waypoint V, RoD FW→RW **Deceleration / Landing approach** Waypoint LD procedure Landing Base LD procedure RW

RW = Rotary Wing Mode FW = Fixed Wing Mode

Autonomous FCS Structure of RASCAL JUH-60A Black Hawk (US Army)

Multi-Level Autonomy

- ✓ Fully Coupled Autonomous Mode
- ✓ Additive Control Mode
- ✓ Decoupled ACAH Mode
- ✓ Pilot Interaction with Mode

 ✓ Control System Design with Mode Transitions

Mission S/W

- ✓ Mission Manager/Operator Interface
- ✓ Obstacle Field Navigation (OFN)
- ✓ Safe Landing Area Determination (SLAD)
- ✓ Path Generation
- ✓ Vector Command
- Autonomous Flight Control S/W (AFCS)
 - ✓ Waypoint Control
 - ✓ Tracking Control
 - ✓ Inner-Loop Control

KU 建國大學校 Summary of Part 2: Rotorcraft Autonomous FCS

At the initial stage of Studies, KKU mainly focused on

- Path planning based on RRT combined with Line-Of-Sight Path Optimization (LOSPO)
- Flyable trajectory generation avoiding ground collision
- Autonomous flight control laws based on the Model Following Control (MFC) framework
- Ahead-time based Carrot-Chasing Guidance Laws(CCGL)

KU LEMICK UNITY Summary of Part 2 : Rotorcraft Autonomous FCS

Effectiveness of Ahead-Time based CCGL (Carrot-Chasing Guidance Law) has been validated through its application to Autonomous guidance along the composite maneuver course.

Applications of CCGL to Composite Maneuver (MFC structure, GL1/GL3)

No.	Maneuvers	Duration	State changes during maneuver				
1	Hover	15sec	Hover station-keeping at 15ft				
2	Acceleration	30sec	Level acceleration from 0 knots to 60knots				
3	Pop-up	10sec	Climb from 15 ft up to 215ft and recover the level f light condition				
4	Helical Turn	60sec	After 720 deg heading and 200 ft altitude changes, return to level flight				
5	Pop-down	10sec	Descent from 415 ft to 215ft and recover the level flight condition				
6	Deceleration	30sec	Level deceleration from 60 knots to hover				

Effect of ahead time on trajectory-tracking accuracy (Upper:GL1, Lower:GL3)

Aircraft states computed with $\Delta t = 9.0(sec)$

KU REALFUNC Summary of Part 2 : Rotorcraft Autonomous FCS

The trajectory-tracking control design, based on IBSC (Incremental Back-Stepping Control) theory, has been developed under the following Know-Hows.

- Flight Dynamic Model represented in the Inertial Frame is more convenient.
- Incremental Dynamics are much more effective for real applications.
- Slack-Variable Approach to System Dynamics is extremely effective.
- SAS-type functions are working well for the trajectory-tracking IBSC.
- Rigorous design works for Gain Optimization can be removed.

Simulation Environment for Flight-Control-Law Validation

Summary of Part 2 : Rotorcraft Autonomous FCS KU 建國大學校 KONKUK UNIV.

Path-Planning, Flyable Trajectory Generation, and Trajectory-Tracking Control Law has been successfully integrated and validated through a series of Applications.

Combined Maneuver Case: Control inputs and Trajectory States

Minimum Clearance distance = 100.0m Maximum Clearance distance = 200.0m

2030 4000 8003 8000 10300 1200 X (m)

End of Part 2 Thank You !!